搜索
    上传资料 赚现金
    【精品】中考数学备考 专题1.1 几何图形中的动点最值问题(原卷版+解析版)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      【精品】中考数学备考 专题1.1 几何图形中的动点最值问题(原卷版).doc
    • 解析
      【精品】中考数学备考 专题1.1 几何图形中的动点最值问题(解析版).doc
    【精品】中考数学备考 专题1.1 几何图形中的动点最值问题(原卷版+解析版)01
    【精品】中考数学备考 专题1.1 几何图形中的动点最值问题(原卷版+解析版)02
    【精品】中考数学备考 专题1.1 几何图形中的动点最值问题(原卷版+解析版)03
    【精品】中考数学备考 专题1.1 几何图形中的动点最值问题(原卷版+解析版)01
    【精品】中考数学备考 专题1.1 几何图形中的动点最值问题(原卷版+解析版)02
    【精品】中考数学备考 专题1.1 几何图形中的动点最值问题(原卷版+解析版)03
    还剩5页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【精品】中考数学备考 专题1.1 几何图形中的动点最值问题(原卷版+解析版)

    展开
    这是一份【精品】中考数学备考 专题1.1 几何图形中的动点最值问题(原卷版+解析版),文件包含精品中考数学备考专题11几何图形中的动点最值问题原卷版doc、精品中考数学备考专题11几何图形中的动点最值问题解析版doc等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。

    原型----“饮马问题”,“造桥选址问题”。考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。[来源:学+科+网Z+X+X+K]
    【解题思路】找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.求线段和的最小值需要用到三个基本知识:两点之间,线段最短;轴对称的性质;线段垂直平分线上的点到线段两端点的距离相等.常见情况有三种:“两点一线”型、“一点两线”型和“两点连线” 型.
    平面上最短路径问题:
    (1)归于“两点之间的连线中,线段最短”。凡属于求“变动的两线段之和的最小值”时,大都应用这一模型。
    (2)归于“三角形两边之差小于第三边”。凡属于求“变动的两线段之差的最大值”时,大都应用这一模型。
    (3)平面图形中,直线同侧两点到直线上一点距离之和最短问题。
    【典型例题】
    【例1】如图,∠AOB=60°,点P是∠AOB内的定点且OP=,若点M、N分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是( )
    A. B. C.6 D.3
    【名师点睛】本题考查了菱形的性质,平面直角坐标系,,轴对称——最短路线问题,三角形相似,勾股定理,动点问题.关于最短路线问题:在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点(注:本题C,D位于OB的同侧).如下图,解决本题的关键:一是找出最短路线,二是根据一次函数与方程组的关系,将两直线的解析式联立方程组,求出交点坐标.
    【例2】如图,已知直线l1∥l2,l1、l2之间的距离为8,点P到直线l1的距离为6,点Q到直线l2的距离为4,PQ=,在直线l1上有一动点A,直线l2上有一动点B,满足AB⊥l2,且PA+AB+BQ最小,此时PA+BQ=______.
    【名师点睛】本题考查了轴对称﹣最短路线问题,根据题意正确正确作出图形是解决问题的关键.
    【方法归纳】
    在平面几何的动态问题中,求几何量的最大值或最小值问题常会运用以下知识:
    三角形的三边关系:两边之和大于第三边,两边之差小于第三边;
    ②两点之间线段最短;
    ③连接直线外一点和直线上各点的所有线段中,垂线段最短;
    ④定圆中的所有弦中,直径最长;
    ⑤利用对称的性质求两条线段之和最小的问题,解决此类问题的方法为:如图,要求线段l上的一动点P到点A、B距离和的最小值,先作点A关于直线L的对称点A′,连接A′B,则A′B与直线L的交点即为P点,根据对称性可知A′B的长即为PA+PB的最小值,求出A′B的值即可.
    【针对练习】
    1.如图,在等边△ABC中,AB=4,点P是BC边上的动点,点P关于直线AB,AC的对称点分别为M,N,则线段MN长的取值范围是 .
    2.如图,∠AOB的边OB与x轴正半轴重合,点P是OA上的一动点,点N(3,0)是OB上的一定点,点M是ON的中点,∠AOB=30°,要使PM+PN最小,则点P的坐标为______.
    3.(长春外国语学校一模)如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形内,在对角线AC上找到一点P,使PD+PE的和最小,则这个和的最小值是( ).
    A. B. C.3 D.
    4.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是( )
    A. B.1 C. D.2
    5.直线y=x+4与x轴、y轴分别交于点A和点B,点C,D分别为线段AB,OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为.
    [来源:Z#xx#k.Cm]
    A.(-3,0) B.(-6,0) C.(-,0) D.(-,0)
    6.如图,菱形ABCD的边长为6,∠ABC=120°,M是BC边的一个三等分点,P是对角线AC上的动点,当PB+PM的值最小时,PM的长是( )
    A. B. C. D.
    7.如图,矩形的顶点的坐标为,是的中点,是上的一点,当的周长最小时,点的坐标是( )
    A. B. C. D.
    8.如图,的半径为2,圆心的坐标为,点是上的任意一点,,且、与轴分别交于、两点,若点、点关于原点对称,则的最小值为( )
    A.3 B.4 C.6 D.8
    9.如图,在等边△ABC中,AB=6,N为AB上一点,且AN=2,∠BAC的平分线交BC于点D,M是AD上的动点,连结BM,MN,则BM+MN的最小值是( )
    A.8 B.10 C. D.2
    10.(扬州一模)如图,在矩形纸片ABCD中,AB=2,AD=3,点E是AB的中点,点F是AD边上的一个动点,将△AEF沿EF所在直线翻折,得到△A′EF,则A′C的长的最小值是( )
    A. B. C. D.
    11.(天津二模)如图,等腰三角形ABC底边BC的长为4 cm,面积为12 cm2,腰AB的垂直平分线EF交AB于点E,交AC于点F,若D为BC边上的中点,M为线段EF上一点,则△BDM的周长最小值为( )
    A.5 cm B.6 cm C.8 cm D.10 cm
    12.如图,已知长方形ABCD,AB=1,BC=2,点M为矩形内一点,点E为BC边上任意一点,则MA+MD+ME的最小值为( )
    A.1 B.1+ C.2+ D.3
    13.如图所示,∠MON=40°,P为∠MON内一点,A为OM上一点,B为ON上一点,当△PAB的周长取最小值时,∠APB的度数为
    A.80° B.100° C.110° D.120°
    14.如图,在△ABC中,∠BAC=90°,AB=3,AC=4,BC=5,EF垂直平分BC,点P为直线EF上的任一点,则AP+BP的最小值是( )
    A.5 B.4 C.3 D.7
    15.如图,在锐角△ABC中,AB=6,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值是 ( )
    A. B. C.6 D.3
    16.如图,已知等边△ABC的面积为4, P、Q、R分别为边AB、BC、AC上的动点,则PR+QR的最小值是( )
    A.3 B.2 C. D.4
    17.如图:等腰△ABC的底边BC长为6,面积是18,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为( )
    A.6 B.8 C.9 D.10[来源:学_科_网]
    18.如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是 .
    [来源:Z。xx。k.Cm]
    19.如图,直线y=x+4与双曲线y=(k≠0)相交于A(﹣1,a)、B两点,在y轴上找一点P,当PA+PB的值最小时,点P的坐标为 .
    相关试卷

    中考经典几何模型与最值问题 专题19 瓜豆原理中动点轨迹圆或圆弧型最值问题: 这是一份中考经典几何模型与最值问题 专题19 瓜豆原理中动点轨迹圆或圆弧型最值问题,文件包含专题19瓜豆原理中动点轨迹圆或圆弧型最值问题教师版docx、专题19瓜豆原理中动点轨迹圆或圆弧型最值问题学生版docx等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。

    中考经典几何模型与最值问题 专题18 瓜豆原理中动点轨迹直线型最值问题: 这是一份中考经典几何模型与最值问题 专题18 瓜豆原理中动点轨迹直线型最值问题,文件包含专题18瓜豆原理中动点轨迹直线型最值问题教师版docx、专题18瓜豆原理中动点轨迹直线型最值问题学生版docx等2份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。

    初中数学中考复习 专题07 几何图形动点运动问题(原卷版): 这是一份初中数学中考复习 专题07 几何图形动点运动问题(原卷版),共14页。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        【精品】中考数学备考 专题1.1 几何图形中的动点最值问题(原卷版+解析版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map