2021年九年级中考数学第三轮冲刺压轴题:二次函数 复习练习题
展开1、如图,抛物线y=﹣x2+2x+c与x轴正半轴,y轴正半轴分别交于点A,B,且OA=OB,点G为抛物线的顶点.
(1)求抛物线的解析式及点G的坐标;
(2)点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的一个动点,求点Q的纵坐标yQ的取值范围.
2、如图,已知抛物线y=ax2+bx+6经过两点A(﹣1,0),B(3,0),C是抛物线与y轴的交点.
(1)求抛物线的解析式;
(2)点P(m,n)在平面直角坐标系第一象限内的抛物线上运动,设△PBC的面积为S,求S关于m的函数表达式(指出自变量m的取值范围)和S的最大值;
(3)点M在抛物线上运动,点N在y轴上运动,是否存在点M、点N使得∠CMN=90°,且△CMN与△OBC相似,如果存在,请求出点M和点N的坐标.
2、如图,一次函数y=﹣x﹣2的图象与二次函数y=ax2+bx﹣4的图象交于x轴上一点A,与y 轴交于点B,在x轴上有一动点C.已知二次函数y=ax2+bx﹣4的图象与y轴交于点D,对称轴为直线x=n(n<0),n是方程2x2﹣3x﹣2=0的一个根,连接AD.
(1)求二次函数的解析式.
(2)当S△ACB=3S△ADB 时,求点C的坐标.
(3)试判断坐标轴上是否存在这样的点C,使得以点A、B、C组成的三角形与△ADB 相似?若存在,试求出点C的坐标;若不存在,请说明理由.
3、如图,已知抛物线与轴相交于、两点,与轴相交于点,若已知点的坐标为.
(1)求抛物线的解析式;
(2)求线段所在直线的解析式;
(3)在抛物线的对称轴上是否存在点,使为等腰三角形?若存在,求出符合条件的点坐标;若不存在,请说明理由.
4、如图,抛物线y=ax2+x+c经过点A(﹣1,0)和点C (0,3)与x轴的另一交点为点B,点M是直线BC上一动点,过点M作MP∥y轴,交抛物线于点P.
(1)求该抛物线的解析式;
(2)在抛物线上是否存在一点Q,使得△QCO是等边三角形?若存在,求出点Q的坐标;若不存在,请说明理由;
(3)以M为圆心,MP为半径作⊙M,当⊙M与坐标轴相切时,求出⊙M的半径.
5、如图,已知直线y=x+2交x轴、y轴分别于点A、B,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣12,且抛物线经过A、B两点,交x轴于另一点C.
(1)求抛物线的解析式;
(2)点M是抛物线x轴上方一点,∠MBA=∠CBO,求点M的坐标;
(3)过点A作AB的垂线交y轴于点D,平移直线AD交抛物线于点E、F两点,连结EO、FO.若△EFO为以EF为斜边的直角三角形,求平移后的直线的解析式.
6、如图,抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C,抛物线的顶点为P.已知B(1,0),C(0,﹣3).请解答下列问题:
(1)求抛物线的解析式,并直接写出点P的坐标;
(2)抛物线的对称轴与x轴交于点E,连接AP,AP的垂直平分线交直线PE于点M,则线段EM的长为 .
注:抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣,顶点坐标是(﹣,).
7、如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).
(1)求这个二次函数的表达式;
(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC.
①求线段PM的最大值;
②当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.
8、如图1,抛物线的顶点为点,与轴的负半轴交于点,直线交抛物线W于另一点,点的坐标为.
(1)求直线的解析式;
(2)过点作轴,交轴于点,若平分,求抛物线W的解析式;
(3)若,将抛物线W向下平移个单位得到抛物线,如图2,记抛物线的顶点为,与轴负半轴的交点为,与射线的交点为.问:在平移的过程中,是否恒为定值?若是,请求出的值;若不是,请说明理由.
9、如图,在平面直角坐标系中,抛物线(a≠0)与y轴交与点C(0,3),与x轴交于A、B两点,点B坐标为(4,0),抛物线的对称轴方程为x=1.
(1)求抛物线的解析式;
(2)点M从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点N从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,设△MBN的面积为S,点M运动时间为t,试求S与t的函数关系,并求S的最大值;
(3)在点M运动过程中,是否存在某一时刻t,使△MBN为直角三角形?若存在,求出t值;若不存在,请说明理由.
10、如图,抛物线与x轴交于A、C两点,与y轴交于B点.
(1)求△AOB的外接圆的面积;
(2)若动点P从点A出发,以每秒2个单位沿射线AC方向运动;同时,点Q从点B出发,以每秒1个单位沿射线BA方向运动,当点P到达点C处时,两点同时停止运动.问当t为何值时,以A、P、Q为顶点的三角形与△OAB相似?
(3)若M为线段AB上一个动点,过点M作MN平行于y轴交抛物线于点N.
①是否存在这样的点M,使得四边形OMNB恰为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.
②当点M运动到何处时,四边形CBNA的面积最大?求出此时点M的坐标及四边形CBAN面积的最大值.
11、如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).
(1)求这个二次函数的表达式;
(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC.
①求线段PM的最大值;
②当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.
12、如图1,在平面直角坐标系中,直线l1:y=x+1与直线l2:x=﹣2相交于点D,点A是直线l2上的动点,过点A作AB⊥l1于点B,点C的坐标为(0,3),连接AC,BC.设点A的纵坐标为t,△ABC的面积为s.
(1)当t=2时,请直接写出点B的坐标;
(2)s关于t的函数解析式为s=,其图象如图2所示,结合图1、2的信息,求出a与b的值;
(3)在l2上是否存在点A,使得△ABC是直角三角形?若存在,请求出此时点A的坐标和△ABC的面积;若不存在,请说明理由.
13、如图1,已知抛物线y=﹣x2+bx+c交y轴于点A(0,4),交x轴于点B(4,0),点P是抛物线上一动点,试过点P作x轴的垂线1,再过点A作1的垂线,垂足为Q,连接AP.
(1)求抛物线的函数表达式和点C的坐标;
(2)若△AQP∽△AOC,求点P的横坐标;
(3)如图2,当点P位于抛物线的对称轴的右侧时,若将△APQ沿AP对折,点Q的对应点为点Q′,请直接写出当点Q′落在坐标轴上时点P的坐标.
14、如图,抛物线过点,且与直线交于B、C两点,点B的坐标为.
(1)求抛物线的解析式;
(2)点D为抛物线上位于直线上方的一点,过点D作轴交直线于点E,点P为对称轴上一动点,当线段的长度最大时,求的最小值;
(3)设点M为抛物线的顶点,在y轴上是否存在点Q,使?若存在,求点Q的坐标;若不存在,请说明理由.
15、如图,已知二次函数y=﹣x2+bx+c(c>0)的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB=OC=3,顶点为M.
(1)求二次函数的解析式;
(2)点P为线段BM上的一个动点,过点P作x轴的垂线PQ,垂足为Q,若OQ=m,四边形ACPQ的面积为S,求S关于m的函数解析式,并写出m的取值范围;
(3)探索:线段BM上是否存在点N,使△NMC为等腰三角形?如果存在,求出点N的坐标;如果不存在,请说明理由.
16、如图①,在平面直角坐标系中,抛物线的对称轴为直线,将直线绕着点顺时针旋转的度数后与该抛物线交于两点(点在点的左侧),点是该抛物线上一点
(1)若,求直线的函数表达式
(2)若点将线段分成的两部分,求点的坐标
(3)如图②,在(1)的条件下,若点在轴左侧,过点作直线轴,点是直线上一点,且位于轴左侧,当以,,为顶点的三角形与相似时,求的坐标
17、抛物线y=x2+bx+c经过点A(﹣3,0)和点B(2,0),与y轴交于点C.
(1)求该抛物线的函数表达式;
(2)点P是该抛物线上的动点,且位于y轴的左侧.
①如图1,过点P作PD⊥x轴于点D,作PE⊥y轴于点E,当PD=2PE时,求PE的长;
②如图2,该抛物线上是否存在点P,使得∠ACP=∠OCB?若存在,请求出所有点P的坐标:若不存在,请说明理由.
18、如图,矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线经过A、C两点,与AB边交于点D.
(1)求抛物线的函数表达式;
(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.
①求S关于m的函数表达式,并求出m为何值时,S取得最大值;
②当S最大时,在抛物线的对称轴l上若存在点F,使△FDQ为直角三角形,请直接写出所有符合条件的F的坐标;若不存在,请说明理由.
中考数学复习中考冲刺压轴题题组练(二)含答案: 这是一份中考数学复习中考冲刺压轴题题组练(二)含答案,共3页。
中考数学复习中考冲刺压轴题题组训练四含答案: 这是一份中考数学复习中考冲刺压轴题题组训练四含答案,共3页。
四川省渠县三江中学2022年中考数学第三轮:二次函数压轴题冲刺: 这是一份四川省渠县三江中学2022年中考数学第三轮:二次函数压轴题冲刺,共14页。试卷主要包含了如图,已知抛物线与x轴交于A.,已知抛物线l1等内容,欢迎下载使用。