2020-2021学年1.不等式的基本性质教案及反思
展开课 题: 第01课时 不等式的基本性质
目的要求:
重点难点:
教学过程:
一、引入:
不等关系是自然界中存在着的基本数学关系。《列子•汤问》中脍炙人口的“两小儿辩日”:“远者小而近者大”、“近者热而远者凉”,就从侧面表明了现实世界中不等关系的广泛存在;日常生活中息息相关的问题,如“自来水管的直截面为什么做成圆的,而不做成方的呢?”、“电灯挂在写字台上方怎样的高度最亮?”、“用一块正方形白铁皮,在它的四个角各剪去一个小正方形,制成一个无盖的盒子。要使制成的盒子的容积最大,应当剪去多大的小正方形?”等,都属于不等关系的问题,需要借助不等式的相关知识才能得到解决。而且,不等式在数学研究中也起着相当重要的作用。
本专题将介绍一些重要的不等式(含有绝对值的不等式、柯西不等式、贝努利不等式、排序不等式等)和它们的证明,数学归纳法和它的简单应用等。
人与人的年龄大小、高矮胖瘦,物与物的形状结构,事与事成因与结果的不同等等都表现出不等的关系,这表明现实世界中的量,不等是普遍的、绝对的,而相等则是局部的、相对的。还可从引言中实际问题出发,说明本章知识的地位和作用。
生活中为什么糖水加糖甜更甜呢?转化为数学问题:a克糖水中含有b克糖(a>b>0),若再加m(m>0)克糖,则糖水更甜了,为什么?
分析:起初的糖水浓度为,加入m克糖 后的糖水浓度为,只要证>即可。怎么证呢?
二、不等式的基本性质:
1、实数的运算性质与大小顺序的关系:
数轴上右边的点表示的数总大于左边的点所表示的数,从实数的减法在数轴上的表示可知:
得出结论:要比较两个实数的大小,只要考察它们的差的符号即可。
2、不等式的基本性质:
①、如果a>b,那么b<a,如果b<a,那么a>b。(对称性)
②、如果a>b,且b>c,那么a>c,即a>b,b>ca>c。
③、如果a>b,那么a+c>b+c,即a>ba+c>b+c。
推论:如果a>b,且c>d,那么a+c>b+d.即a>b, c>d a+c>b+d.
④、如果a>b,且c>0,那么ac>bc;如果a>b,且c<0,那么ac<bc.
⑤、如果a>b >0,那么 (nN,且n>1)
⑥、如果a>b >0,那么 (nN,且n>1)。
三、典型例题:
四、练习:
五、作业:
高中数学人教版新课标A选修4-5一 数学归纳法教案: 这是一份高中数学人教版新课标A选修4-5一 数学归纳法教案,共2页。教案主要包含了引入,典型例题,小结,练习等内容,欢迎下载使用。
高中数学人教版新课标A选修4-5三 反证法与放缩法教案: 这是一份高中数学人教版新课标A选修4-5三 反证法与放缩法教案,共3页。教案主要包含了引入,典型例题,小结,练习,作业等内容,欢迎下载使用。
2021学年三 反证法与放缩法教案: 这是一份2021学年三 反证法与放缩法教案,共3页。教案主要包含了引入,典型例题,小结,练习,作业等内容,欢迎下载使用。