- 苏科版数学九年级下册苏科九下期中测试卷(1) 试卷 2 次下载
- 苏科版数学九年级下册苏科九下期中测试卷(2) 试卷 0 次下载
- 苏科版数学九年级下册苏科九下期中测试卷(3) 试卷 0 次下载
- 苏科版数学九年级下册苏科九下期末测试卷(2) 试卷 0 次下载
- 苏科版数学九年级下册苏科九下期末测试卷(3) 试卷 1 次下载
苏科版数学九年级下册苏科九下期末测试卷(1)
展开期末测试卷(1)
一.选择题
1.如图,抛物线y=ax2+bx+c经过点(﹣1,0),对称轴l如图所示,则下列结论:①abc>0;②a﹣b+c=0;③2a+c<0;④a+b<0,其中所有正确的结论是( )
A.①③ B.②③ C.②④ D.②③④
2.在下列y关于x的函数中,一定是二次函数的是( )
A.y=2x2 B.y=2x﹣2 C.y=ax2 D.
3.对于二次函数y=﹣(x﹣1)2+2的图象与性质,下列说法正确的是( )
A.对称轴是直线x=1,最小值是2B.对称轴是直线x=1,最大值是2C.对称轴是直线x=﹣1,最小值是2D.对称轴是直线x=﹣1,最大值是2
4.如图,在正方形ABCD中,E、F分别是AB、CD的中点,EG⊥AF,FH⊥CE,垂足分别为G,H,设AG=x,图中阴影部分面积为y,则y与x之间的函数关系式是( )
A.y=3x2 B.y=4x2 C.y=8x2 D.y=9x2
5.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:
t
0
1
2
3
4
5
6
7
…
h
0
8
14
18
20
20
18
14
…
下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线t=;③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是11m,其中正确结论的个数是( )
A.1 B.2 C.3 D.4
6.已知2x=3y(y≠0),则下面结论成立的是( )
A.= B.= C.= D.=
7.矩形的长与宽分别为a、b,下列数据能构成黄金矩形的是( )
A.a=4,b=+2 B.a=4,b=﹣2 C.a=2,b=+1 D.a=2,b=﹣1
8.若△ABC的每条边长增加各自的10%得△A′B′C′,则∠B′的度数与其对应角∠B的度数相比( )
A.增加了10% B.减少了10% C.增加了(1+10%) D.没有改变
9.如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )
A. B. C. D.
10.已知△ABC∽△DEF,且相似比为1:2,则△ABC与△DEF的面积比为( )
A.1:4 B.4:1 C.1:2 D.2:1
11.如图,△A′B′C′是△ABC以点O为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC的面积比是4:9,则OB′:OB为( )
A.2:3 B.3:2 C.4:5 D.4:9
12.志远要在报纸上刊登广告,一块10cm×5cm的长方形版面要付广告费180元,他要把该版面的边长都扩大为原来的3倍,在每平方厘米版面广告费相同的情况下,他该付广告费( )
A.540元 B.1080元 C.1620元 D.1800元
二.填空题
13.如图,在边长相同的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB与CD相交于点P,则tan∠APD的值为 .
14.如图,P(12,a)在反比例函数图象上,PH⊥x轴于H,则tan∠POH的值为________.
15.计算:2sin60°= .
16.用科学计算器计算:+3tan56°≈ .结果精确到0.01)
17.如图,在2×2的网格中,以顶点O为圆心,以2个单位长度为半径作圆弧,交图中格线于点A,则tan∠ABO的值为 .
18.如图,在一笔直的沿湖道路l上有A、B两个游船码头,观光岛屿C在码头 A北偏东60°的方向,在码头 B北偏西45°的方向,AC=4km.游客小张准备从观光岛屿C乘船沿CA回到码头A或沿CB回到码头B,设开往码头A、B的游船速度分别为v1、v2,若回到 A、B所用时间相等,则= (结果保留根号).
三.解答题
19.自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的A品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:
使用次数
0
1
2
3
4
5(含5次以上)
累计车费
0
0.5
0.9
a
b
1.5
同时,就此收费方案随机调查了某高校100名师生在一天中使用A品牌共享单车的意愿,得到如下数据:
使用次数
0
1
2
3
4
5
人数
5
15
10
30
25
15
(1)写出a,b的值;
(2)已知该校有5000名师生,且A品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利?说明理由.
20.小明在某次作业中得到如下结果:
sin27°+sin283°≈0.122+0.992=0.9945,
sin222°+sin268°≈0.372+0.932=1.0018,
sin229°+sin261°≈0.482+0.872=0.9873,
sin237°+sin253°≈0.602+0.802=1.0000,
sin245°+sin245°≈()2+()2=1.
据此,小明猜想:对于任意锐角α,均有sin2α+sin2(90°﹣α)=1.
(1)当α=30°时,验证sin2α+sin2(90°﹣α)=1是否成立;
(2)小明的猜想是否成立?若成立,请给予证明;若不成立,请举出一个反例.
21. (1)计算:÷;
(2)如图,正方形ABCD中,点E,F,G分别在AB,BC,CD上,且∠EFG=90°.求证:△EBF∽△FCG.
22.已知抛物线C1:y=ax2﹣4ax﹣5(a>0).
(1)当a=1时,求抛物线与x轴的交点坐标及对称轴;
(2)①试说明无论a为何值,抛物线C1一定经过两个定点,并求出这两个定点的坐标;
②将抛物线C1沿这两个定点所在直线翻折,得到抛物线C2,直接写出C2的表达式;
(3)若(2)中抛物线C2的顶点到x轴的距离为2,求a的值.
23.定义:如图1,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,点P在该抛物线上(P点与A、B两点不重合),如果△ABP的三边满足AP2+BP2=AB2,则称点P为抛物线y=ax2+bx+c(a≠0)的勾股点.
(1)直接写出抛物线y=﹣x2+1的勾股点的坐标.
(2)如图2,已知抛物线C:y=ax2+bx(a≠0)与x轴交于A,B两点,点P(1,)是抛物线C的勾股点,求抛物线C的函数表达式.
(3)在(2)的条件下,点Q在抛物线C上,求满足条件S△ABQ=S△ABP的Q点(异于点P)的坐标.
24.如图,为了测量某条河的宽度,现在河边的一岸边任意取一点A,又在河的另一岸边去两点B、C测得∠α=30°,∠β=45°,量得BC长为100米.求河的宽度(结果保留根号).
答案
一.选择题
1.如图,抛物线y=ax2+bx+c经过点(﹣1,0),对称轴l如图所示,则下列结论:①abc>0;②a﹣b+c=0;③2a+c<0;④a+b<0,其中所有正确的结论是( )
A.①③ B.②③ C.②④ D.②③④
【考点】H4:二次函数图象与系数的关系.
【专题】选择题
【难度】易
【分析】①根据开口向下得出a<0,根据对称轴在y轴右侧,得出b>0,根据图象与y轴的交点在y轴的正半轴上,得出c>0,从而得出abc<0,进而判断①错误;
②由抛物线y=ax2+bx+c经过点(﹣1,0),即可判断②正确;
③由图可知,x=2时,y<0,即4a+2b+c<0,把b=a+c代入即可判断③正确;
④由图可知,x=2时,y<0,即4a+2b+c<0,把c=b﹣a代入即可判断④正确.
【解答】解:①∵二次函数图象的开口向下,
∴a<0,
∵二次函数图象的对称轴在y轴右侧,
∴﹣>0,
∴b>0,
∵二次函数的图象与y轴的交点在y轴的正半轴上,
∴c>0,
∴abc<0,故①错误;
②∵抛物线y=ax2+bx+c经过点(﹣1,0),
∴a﹣b+c=0,故②正确;
③∵a﹣b+c=0,∴b=a+c.
由图可知,x=2时,y<0,即4a+2b+c<0,
∴4a+2(a+c)+c<0,
∴6a+3c<0,∴2a+c<0,故③正确;
④∵a﹣b+c=0,∴c=b﹣a.
由图可知,x=2时,y<0,即4a+2b+c<0,
∴4a+2b+b﹣a<0,
∴3a+3b<0,∴a+b<0,故④正确.
故选D.
【点评】本题考查了二次函数y=ax2+bx+c(a≠0)的性质:
①二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;|a|还可以决定开口大小,|a|越大开口就越小.②一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).④抛物线与x轴交点个数.△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.
2.在下列y关于x的函数中,一定是二次函数的是( )
A.y=2x2 B.y=2x﹣2 C.y=ax2 D.
【考点】H1:二次函数的定义.
【专题】选择题
【难度】易
【分析】根据二次函数的定义形如y=ax2+bx+c (a≠0)是二次函数.
【解答】解:A、是二次函数,故A符合题意;
B、是一次函数,故B错误;
C、a=0时,不是二次函数,故C错误;
D、a≠0时是分式方程,故D错误;
故选:A.
【点评】本题考查二次函数的定义,形如y=ax2+bx+c (a≠0)是二次函数.
3.对于二次函数y=﹣(x﹣1)2+2的图象与性质,下列说法正确的是( )
A.对称轴是直线x=1,最小值是2B.对称轴是直线x=1,最大值是2C.对称轴是直线x=﹣1,最小值是2D.对称轴是直线x=﹣1,最大值是2
【考点】H3:二次函数的性质;H7:二次函数的最值.
【专题】选择题
【难度】易
【分析】根据抛物线的图象与性质即可判断.
【解答】解:由抛物线的解析式:y=﹣(x﹣1)2+2,
可知:对称轴x=1,
开口方向向下,所以有最大值y=2,
故选(B)
【点评】本题考查二次函数的性质,解题的关键是正确理解抛物线的图象与性质,本题属于基础题型.
4.如图,在正方形ABCD中,E、F分别是AB、CD的中点,EG⊥AF,FH⊥CE,垂足分别为G,H,设AG=x,图中阴影部分面积为y,则y与x之间的函数关系式是( )
A.y=3x2 B.y=4x2 C.y=8x2 D.y=9x2
【考点】H8:待定系数法求二次函数解析式;LE:正方形的性质.
【专题】选择题
【难度】易
【分析】设正方形的边长为a,易证四边形ADCE是平行四边形,所以四边形EHFG是矩形,由锐角三角函数可知,从而可用x表示出EG,从而可求出y与x之间的关系式;
【解答】解:设正方形的边长为a,
∴BC=2a,BE=a,
∵E、F分别是AB、CD的中点,
∴AE=CF,
∵AE∥CF,
∴四边形ADCE是平行四边形,
∴AF∥CE,
∵EG⊥AF,FH⊥CE,
∴四边形EHFG是矩形,
∵∠AEG+∠BEC=∠BCE+∠BEC=90°,
∴∠AEG=∠BCE,
∴tan∠AEG=tan∠BCE,
∴=,
∴EG=2x,
∴由勾股定理可知:AE=x,
∴AB=BC=2x,
∴CE=5x,
易证:△AEG≌△CFH,
∴AG=CH,
∴EH=EC﹣CH=4x,
∴y=EG•EC=8x2,
故选(C)
【点评】本题考查矩形的综合问题,涉及相似三角形的性质与判定,锐角三角函数,矩形的性质与判定,全等三角形的判定与性质等知识,综合程度较高,属于中等题型.
5.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:
t
0
1
2
3
4
5
6
7
…
h
0
8
14
18
20
20
18
14
…
下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线t=;③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是11m,其中正确结论的个数是( )
A.1 B.2 C.3 D.4
【考点】HE:二次函数的应用.
【专题】选择题
【难度】易
【分析】由题意,抛物线的解析式为y=at(t﹣9),把(1,8)代入可得a=﹣1,可得y=﹣t2+9t=﹣(t﹣4.5)2+20.25,由此即可一一判断.
【解答】解:由题意,抛物线的解析式为y=at(t﹣9),把(1,8)代入可得a=﹣1,
∴y=﹣t2+9t=﹣(t﹣4.5)2+20.25,
∴足球距离地面的最大高度为20.25m,故①错误,
∴抛物线的对称轴t=4.5,故②正确,
∵t=9时,y=0,
∴足球被踢出9s时落地,故③正确,
∵t=1.5时,y=11.25,故④错误.
∴正确的有②③,
故选B.
【点评】本题考查二次函数的应用、求出抛物线的解析式是解题的关键,属于中考常考题型.
6.已知2x=3y(y≠0),则下面结论成立的是( )
A.= B.= C.= D.=
【考点】S1:比例的性质.
【专题】选择题
【难度】易
【分析】根据等式的性质,可得答案.
【解答】解:A、两边都除以2y,得=,故A符合题意;
B、两边除以不同的整式,故B不符合题意;
C、两边都除以2y,得=,故C不符合题意;
D、两边除以不同的整式,故D不符合题意;
故选:A.
【点评】本题考查了等式的性质,利用等式的性质是解题关键.
7.矩形的长与宽分别为a、b,下列数据能构成黄金矩形的是( )
A.a=4,b=+2 B.a=4,b=﹣2 C.a=2,b=+1 D.a=2,b=﹣1
【考点】S3:黄金分割;LB:矩形的性质.
【专题】选择题
【难度】易
【分析】根据黄金矩形的定义判断即可.
【解答】解:∵宽与长的比是的矩形叫做黄金矩形,
∴=,
∴a=2,b=﹣1,
故选D.
【点评】本题主要考查了黄金矩形,记住定义是解题的关键.
8.若△ABC的每条边长增加各自的10%得△A′B′C′,则∠B′的度数与其对应角∠B的度数相比( )
A.增加了10% B.减少了10% C.增加了(1+10%) D.没有改变
【考点】S5:相似图形.
【专题】选择题
【难度】易
【分析】根据两个三角形三边对应成比例,这两个三角形相似判断出两个三角形相似,再根据相似三角形对应角相等解答.
【解答】解:∵△ABC的每条边长增加各自的10%得△A′B′C′,
∴△ABC与△A′B′C′的三边对应成比例,
∴△ABC∽△A′B′C′,
∴∠B′=∠B.
故选D.
【点评】本题考查了相似图形,熟练掌握相似三角形的判定是解题的关键.
9.如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )
A. B. C. D.
【考点】S8:相似三角形的判定.
【专题】选择题
【难度】易
【分析】根据相似三角形的判定定理对各选项进行逐一判定即可.
【解答】解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;
B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;
C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确.
D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;
故选C.
【点评】本题考查的是相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键.
10.已知△ABC∽△DEF,且相似比为1:2,则△ABC与△DEF的面积比为( )
A.1:4 B.4:1 C.1:2 D.2:1
【考点】S7:相似三角形的性质.
【专题】选择题
【难度】易
【分析】利用相似三角形面积之比等于相似比的平方计算即可.
【解答】解:∵△ABC∽△DEF,且相似比为1:2,
∴△ABC与△DEF的面积比为1:4,
故选A
【点评】此题考查了相似三角形的性质,熟练掌握相似三角形的性质是解本题的关键.
11.如图,△A′B′C′是△ABC以点O为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC的面积比是4:9,则OB′:OB为( )
A.2:3 B.3:2 C.4:5 D.4:9
【考点】SC:位似变换.
【专题】选择题
【难度】易
【分析】先求出位似比,根据位似比等于相似比,再由相似三角形的面积比等于相似比的平方即可.
【解答】解:由位似变换的性质可知,A′B′∥AB,A′C′∥AC,
∴△A′B′C′∽△ABC.
∵△A'B'C'与△ABC的面积的比4:9,
∴△A'B'C'与△ABC的相似比为2:3,
∴=
故选:A.
【点评】本题考查的是位似变换的概念和性质,如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.
12.志远要在报纸上刊登广告,一块10cm×5cm的长方形版面要付广告费180元,他要把该版面的边长都扩大为原来的3倍,在每平方厘米版面广告费相同的情况下,他该付广告费( )
A.540元 B.1080元 C.1620元 D.1800元
【考点】SA:相似三角形的应用.
【专题】选择题
【难度】易
【分析】根据题意可知版面的边长都扩大为原来的3倍后的面积,然后根据每平方厘米的广告费即可求出答案.
【解答】解:∵一块10cm×5cm的长方形版面要付广告费180元,
∴每平方厘米的广告费为:180÷50=元,
∴把该版面的边长都扩大为原来的3倍后的广告费为:30×15×=1620元
故选(C)
【点评】本题考查相似形的应用,解题的关键是求出每平方厘米的广告费,本题属于基础题型.
二.填空题
13.如图,在边长相同的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB与CD相交于点P,则tan∠APD的值为 .
【考点】T1:锐角三角函数的定义.
【专题】填空题
【难度】中
【分析】首先连接BE,由题意易得BF=CF,△ACP∽△BDP,然后由相似三角形的对应边成比例,易得DP:CP=1:3,即可得PF:CF=PF:BF=1:2,在Rt△PBF中,即可求得tan∠BPF的值,继而求得答案.
【解答】解:如图,连接BE,
∵四边形BCED是正方形,
∴DF=CF=CD,BF=BE,CD=BE,BE⊥CD,
∴BF=CF,
根据题意得:AC∥BD,
∴△ACP∽△BDP,
∴DP:CP=BD:AC=1:3,
∴DP:DF=1:2,
∴DP=PF=CF=BF,
在Rt△PBF中,tan∠BPF==2,
∵∠APD=∠BPF,
∴tan∠APD=2.
故答案为:2
【点评】此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.
14.如图,P(12,a)在反比例函数图象上,PH⊥x轴于H,则tan∠POH的值为________.
【考点】T1:锐角三角函数的定义;G6:反比例函数图象上点的坐标特征.
【专题】填空题
【难度】中
【分析】利用锐角三角函数的定义求解,tan∠POH为∠POH的对边比邻边,求出即可.
【解答】解:∵P(12,a)在反比例函数图象上,
∴a==5,
∵PH⊥x轴于H,
∴PH=5,OH=12,
∴tan∠POH=,
故答案为:.
【点评】此题主要考查了反比例函数图象上点的坐标特征,锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.
15.计算:2sin60°= .
【考点】T5:特殊角的三角函数值.
【专题】填空题
【难度】中
【分析】根据特殊角的三角函数值计算.
【解答】解:2sin60°=2×=.
【点评】本题考查特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现,题型以选择题、填空题为主.
【相关链接】特殊角三角函数值:
sin30°=,cos30°=,tan30°=,cot30°=;
sin45°=,cos45°=,tan45°=1,cot45°=1;
sin60°=,cos60°=,tan60°=,cot60°=.
16.用科学计算器计算:+3tan56°≈ .结果精确到0.01)
【考点】T6:计算器—三角函数;1H:近似数和有效数字;25:计算器—数的开方.
【专题】填空题
【难度】中
【分析】正确使用计算器计算即可.按运算顺序进行计算.
【解答】解:+3tan56°=5.568+1.732×0.8290
≈5.568+1.436
≈7.00.
故答案为:7.00.
【点评】此题考查了使用计算器计算三角函数的有关知识,解题的关键是:正确使用计算器计算.
17.如图,在2×2的网格中,以顶点O为圆心,以2个单位长度为半径作圆弧,交图中格线于点A,则tan∠ABO的值为 .
【考点】T7:解直角三角形.
【专题】填空题
【难度】中
【分析】连接OA,过点A作AC⊥OB于点C,由题意知AC=1、OA=OB=2,从而得出OC==、BC=OB﹣OC=2﹣,在Rt△ABC中,根据tan∠ABO=可得答案.
【解答】解:如图,连接OA,过点A作AC⊥OB于点C,
则AC=1,OA=OB=2,
∵在Rt△AOC中,OC===,
∴BC=OB﹣OC=2﹣,
∴在Rt△ABC中,tan∠ABO===2+.
故答案是:2+.
【点评】本题主要考查解直角三角形,根据题意构建一个以∠ABO为内角的直角三角形是解题的关键.
18.如图,在一笔直的沿湖道路l上有A、B两个游船码头,观光岛屿C在码头 A北偏东60°的方向,在码头 B北偏西45°的方向,AC=4km.游客小张准备从观光岛屿C乘船沿CA回到码头A或沿CB回到码头B,设开往码头A、B的游船速度分别为v1、v2,若回到 A、B所用时间相等,则= (结果保留根号).
【考点】TB:解直角三角形的应用﹣方向角问题;KU:勾股定理的应用.
【专题】填空题
【难度】中
【分析】作CD⊥AB于点D,在Rt△ACD中利用三角函数求得CD的长,然后在Rt△BCD中求得BC的长,然后根据=求解.
【解答】解:作CD⊥AB于点B.
∵在Rt△ACD中,∠CAD=90°﹣60°=30°,
∴CD=AC•sin∠CAD=4×=2(km),
∵Rt△BCD中,∠CBD=90°,
∴BC=CD=2(km),
∴===.
故答案是:.
【点评】本题考查了解直角三角形的应用,作出辅助线,转化为直角三角形的计算,求得BC的长是关键.
三.解答题
19.自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的A品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:
使用次数
0
1
2
3
4
5(含5次以上)
累计车费
0
0.5
0.9
a
b
1.5
同时,就此收费方案随机调查了某高校100名师生在一天中使用A品牌共享单车的意愿,得到如下数据:
使用次数
0
1
2
3
4
5
人数
5
15
10
30
25
15
(1)写出a,b的值;
(2)已知该校有5000名师生,且A品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利?说明理由.
【考点】V5:用样本估计总体.
【专题】解答题
【难度】难
【分析】(1)根据收费调整情况列出算式计算即可求解;
(2)先根据平均数的计算公式求出抽取的100名师生每人每天使用A品牌共享单车的平均车费,再根据用样本估计总体求出5000名师生一天使用共享单车的费用,再与5800比较大小即可求解.
【解答】解:(1)a=0.9+0.3=1.2,b=1.2+0.2=1.4;
(2)根据用车意愿调查结果,抽取的100名师生每人每天使用A品牌共享单车的平均车费为:
×(0×5+0.5×15+0.9×10+1.2×30+1.4×25+1.5×15)=1.1(元),
所以估计5000名师生一天使用共享单车的费用为:5000×1.1=5500(元),
因为5500<5800,
故收费调整后,此运营商在该校投放A品牌共享单车不能获利.
【点评】考查了样本平均数,用样本估计总体,(Ⅱ)中求得抽取的100名师生每人每天使用A品牌共享单车的平均车费是解题的关键.
20.小明在某次作业中得到如下结果:
sin27°+sin283°≈0.122+0.992=0.9945,
sin222°+sin268°≈0.372+0.932=1.0018,
sin229°+sin261°≈0.482+0.872=0.9873,
sin237°+sin253°≈0.602+0.802=1.0000,
sin245°+sin245°≈()2+()2=1.
据此,小明猜想:对于任意锐角α,均有sin2α+sin2(90°﹣α)=1.
(1)当α=30°时,验证sin2α+sin2(90°﹣α)=1是否成立;
(2)小明的猜想是否成立?若成立,请给予证明;若不成立,请举出一个反例.
【考点】T4:互余两角三角函数的关系;T5:特殊角的三角函数值.
【专题】解答题
【难度】难
【分析】(1)将α=30°代入,根据三角函数值计算可得;
(2)设∠A=α,则∠B=90°﹣α,根据正弦函数的定义及勾股定理即可验证.
【解答】解1:(1)当α=30°时,
sin2α+sin2(90°﹣α)
=sin230°+sin260°
=()2+()2
=+
=1;
(2)小明的猜想成立,证明如下:
如图,在△ABC中,∠C=90°,
设∠A=α,则∠B=90°﹣α,
∴sin2α+sin2(90°﹣α)
=()2+()2
=
=
=1.
【点评】本题主要考查特殊锐角的三角函数值及正弦函数的定义,熟练掌握三角函数的定义及勾股定理是解题的关键.
21. (1)计算:÷;
(2)如图,正方形ABCD中,点E,F,G分别在AB,BC,CD上,且∠EFG=90°.求证:△EBF∽△FCG.
【考点】S8:相似三角形的判定;6A:分式的乘除法;LE:正方形的性质.
【专题】解答题
【难度】难
【分析】(1)先把分母因式分解,再把除法运算化为乘法运算,然后约分即可;
(2)先根据正方形的性质得∠B=∠C=90°,再利用等角的余角相等得∠BEF=∠CFG,然后根据有两组角对应相等的两个三角形相似可判定△EBF∽△FCG.
【解答】(1)解:原式=•
=;
(2)证明:∵四边形ABCD为正方形,
∴∠B=∠C=90°,
∴∠BEF+∠BFE=90°,
∵∠EFG=90°,
∴∠BFE+∠CFG=90°,
∴∠BEF=∠CFG,
∴△EBF∽△FCG.
【点评】本题考查了相似三角形的判定:有两组角对应相等的两个三角形相似.也考查了分式的乘除法和正方形的性质.
22.已知抛物线C1:y=ax2﹣4ax﹣5(a>0).
(1)当a=1时,求抛物线与x轴的交点坐标及对称轴;
(2)①试说明无论a为何值,抛物线C1一定经过两个定点,并求出这两个定点的坐标;
②将抛物线C1沿这两个定点所在直线翻折,得到抛物线C2,直接写出C2的表达式;
(3)若(2)中抛物线C2的顶点到x轴的距离为2,求a的值.
【考点】HA:抛物线与x轴的交点;H6:二次函数图象与几何变换.
【专题】解答题
【难度】难
【分析】(1)将a=1代入解析式,即可求得抛物线与x轴交点;
(2)①化简抛物线解析式,即可求得两个定点的横坐标,即可解题;
②根据抛物线翻折理论即可解题;
(3)根据(2)中抛物线C2解析式,分类讨论y=2或﹣2,即可解题;
【解答】解:(1)当a=1时,抛物线解析式为y=x2﹣4x﹣5=(x﹣2)2﹣9,
∴对称轴为x=2;
∴当y=0时,x﹣2=3或﹣3,即x=﹣1或5;
∴抛物线与x轴的交点坐标为(﹣1,0)或(5,0);
(2)①抛物线C1解析式为:y=ax2﹣4ax﹣5,
整理得:y=ax(x﹣4)﹣5;
∵当ax(x﹣4)=0时,y恒定为﹣5;
∴抛物线C1一定经过两个定点(0,﹣5),(4,﹣5);
②这两个点连线为y=﹣5;
将抛物线C1沿y=﹣5翻折,得到抛物线C2,开口方向变了,但是对称轴没变;
∴抛物线C2解析式为:y=﹣ax2+4ax﹣5,
(3)抛物线C2的顶点到x轴的距离为2,
则x=2时,y=2或者﹣2;
当y=2时,2=﹣4a+8a﹣5,解得,a=;
当y=﹣2时,﹣2=﹣4a+8a﹣5,解得,a=;
∴a=或;
【点评】本题考查了代入法求抛物线解析式的方法,考查了抛物线翻折后对称轴不变的原理,考查了抛物线顶点的求解.
23.定义:如图1,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,点P在该抛物线上(P点与A、B两点不重合),如果△ABP的三边满足AP2+BP2=AB2,则称点P为抛物线y=ax2+bx+c(a≠0)的勾股点.
(1)直接写出抛物线y=﹣x2+1的勾股点的坐标.
(2)如图2,已知抛物线C:y=ax2+bx(a≠0)与x轴交于A,B两点,点P(1,)是抛物线C的勾股点,求抛物线C的函数表达式.
(3)在(2)的条件下,点Q在抛物线C上,求满足条件S△ABQ=S△ABP的Q点(异于点P)的坐标.
【考点】HA:抛物线与x轴的交点;H8:待定系数法求二次函数解析式.
【专题】解答题
【难度】难
【分析】(1)根据抛物线勾股点的定义即可得;
(2)作PG⊥x轴,由点P坐标求得AG=1、PG=、PA=2,由tan∠PAB==知∠PAG=60°,从而求得AB=4,即B(4,0),待定系数法求解可得;
(3)由S△ABQ=S△ABP且两三角形同底,可知点Q到x轴的距离为,据此求解可得.
【解答】解:(1)抛物线y=﹣x2+1的勾股点的坐标为(0,1);
(2)抛物线y=ax2+bx过原点,即点A(0,0),
如图,作PG⊥x轴于点G,
∵点P的坐标为(1,),
∴AG=1、PG=,PA===2,
∵tan∠PAB==,
∴∠PAG=60°,
在Rt△PAB中,AB===4,
∴点B坐标为(4,0),
设y=ax(x﹣4),
将点P(1,)代入得:a=﹣,
∴y=﹣x(x﹣4)=﹣x2+x;
(3)①当点Q在x轴上方时,由S△ABQ=S△ABP知点Q的纵坐标为,
则有﹣x2+x=,
解得:x1=3,x2=1(不符合题意,舍去),
∴点Q的坐标为(3,);
②当点Q在x轴下方时,由S△ABQ=S△ABP知点Q的纵坐标为﹣,
则有﹣x2+x=﹣,
解得:x1=2+,x2=2﹣,
∴点Q的坐标为(2+,﹣)或(2﹣,﹣);
综上,满足条件的点Q有3个:(3,)或(2+,﹣)或(2﹣,﹣).
【点评】本题主要考查抛物线与x轴的交点及待定系数法求函数解析式,根据新定义求得点B的坐标,并熟练掌握待定系数求函数解析式及三角形面积问题是解题的关键.
24.如图,为了测量某条河的宽度,现在河边的一岸边任意取一点A,又在河的另一岸边去两点B、C测得∠α=30°,∠β=45°,量得BC长为100米.求河的宽度(结果保留根号).
【考点】T8:解直角三角形的应用.
【专题】解答题
【难度】难
【分析】直接过点A作AD⊥BC于点D,利用tan30°==,进而得出答案.
【解答】解:过点A作AD⊥BC于点D,
∵∠β=45°,∠ADC=90°,
∴AD=DC,
设AD=DC=xm,
则tan30°==,
解得:x=50(+1),
答:河的宽度为50(+1)m.
【点评】此题主要考查了解直角三角形的应用,正确得出AD=CD是解题关键.
初中数学苏科七下期末测试卷(1): 这是一份初中数学苏科七下期末测试卷(1),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
苏科版数学九年级下册苏科九下期末测试卷(3): 这是一份初中数学苏科版九年级下册本册综合达标测试,共33页。试卷主要包含了下列函数是二次函数的是,如图,一次函数y=ax+b,如果=2017,则等于等内容,欢迎下载使用。
苏科版数学九年级下册苏科九下期末测试卷(2): 这是一份初中数学苏科版九年级下册本册综合复习练习题,共34页。试卷主要包含了下列函数不属于二次函数的是,若抛物线y=x2﹣4x+2﹣t,若2a=3b,则a等内容,欢迎下载使用。