


【精品试卷】中考数学一轮复习 专题测试30 概率(培优提高)(教师版)
展开专题30 概率(专题测试-提高)
学校:___________姓名:___________班级:___________考号:___________
一、 选择题(共12小题,每小题4分,共48分)
1.(2019·山东中考真题)将一枚飞镖任意投掷到如图所示的正六边形镖盘上,飞镖落在白色区域的概率为( )
A. B. C. D.无法确定
【答案】B
【详解】
如图,根据正六方形的性质可得,△AOC≅△ABC(SSS),同理△EOC≅△EDC, △AFE≅△AOE,
所以,阴影面积=空白部分面积
所以,飞镖落在白色区域的概率为
故选:B
2.(2013·山东中考真题)一个不透明的口袋里装有除颜色都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法,先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了100次,其中有10次摸到白球,因此小亮估计口袋中的红球大约有( )个
A.45 B.48 C.50 D.55
【答案】A
【详解】
∵小亮共摸了100次,其中10次摸到白球,则有90次摸到红球,
∴白球与红球的数量之比为1:9,
∵白球有5个,
∴红球有9×5=45(个),
故选A.
3.(2015·浙江中考真题)一个布袋内只装有1个黑球和2个白球,这些球除颜色不同外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( )
A. B. C. D.
【答案】D
【解析】
试题分析:列表如下
| 黑 | 白1 | 白2 |
黑 | (黑,黑) | (白1,黑) | (白2,黑) |
白1 | (黑,白1) | (白1,白1) | (白2,白1) |
白2 | (黑,白2) | (白1,白2) | (白2,白2) |
由表格可知,随机摸出一个球后放回搅匀,再随机摸出一个球所以的结果有9种,两次摸出的球都是黑球的结果有1种,所以两次摸出的球都是黑球的概率是.故答案选D.
4.(2019·浙江中考真题)为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高()统计如下:
组别() | ||||
人数 | 5 | 38 | 42 | 15 |
根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于的概率是( )
A.0.85 B.0.57 C.0.42 D.0.15
【答案】D
【详解】
样本中身高不低于180cm的频率==0.15,
所以估计他的身高不低于180cm的概率是0.15.
故选D.
5.(2019·贵州中考真题)如图,在3×3的正方形网格中,有三个小正方形己经涂成灰色,若再任意涂灰1个白色的小正方形(每个白色的小正方形被涂成灰色的可能性相同),使新构成灰色部分的图形是轴对称图形的概率是( )
A. B. C. D.
【答案】D
【详解】
如图所示:
当1,2两个分别涂成灰色,新构成灰色部分的图形是轴对称图形,
故新构成灰色部分的图形是轴对称图形的概率是:.
故选:D.
6.(2019·四川中考真题)在一个布袋中装有红、白两种颜色的小球,它们除颜色外没有任何其他区别.其中红球若干,白球5个,袋中的球已搅匀.若从袋中随机取出1个球,取出红球的可能性大,则红球的个数是( )
A.4个 B.5个 C.不足4个 D.6个或6个以上
【答案】D
【详解】
解:∵袋子中白球有5个,且从袋中随机取出1个球,取出红球的可能性大,
∴红球的个数比白球个数多,
∴红球个数满足6个或6个以上,
故选:D.
7.(2016·福建中考真题)在一个密闭不透明的袋子里有若干个白球.为估计白球个数,小何向其中投入8个黑球,搅拌均匀后随机摸出一个球,记下颜色,再把它放入袋中,不断重复摸球400次,其中88次摸到黑球,则估计袋中大约有白球( )
A.18个 B.28个 C.36个 D.42个
【答案】B
【解析】
由题意可得,
白球的个数大约为:8÷﹣8≈28,
故选B.
8.(2014·黑龙江中考真题)(德智外国语期末)如图,一个质地均匀的正四面体上依次标有数字-2,0,1,2,连续抛掷两次,朝下一面的数字分别是a,b,将其作为M点的横、纵坐标,则点M(a,b)落在以A(-2,0),B(2,0),C(0,2)为顶点的三角形内(包括边界)的概率是( )
A. B. C. D.
【答案】B
【解析】
解:列举出事件:(-2,1),(-2,0),(-2,2),(0,-2),(0,1),(0,2),(1,2),(1,0),(1,-2),(2,-2),(2,0),(2,1)共有12种结果,
而落在以A(-2,0),B(2,0),C(0,2)为顶点的三角形内(包含边界)有:(-2,0),(0,1),(0,2),(1,0),(2,0),(-1,0)共6中可能情况,
所以落在以A(-2,0),B(2,0),C(0,2)为顶点的三角形内(包含边界)的概率是=,
故选C.
9.(2013·湖北中考真题)袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是( )
A.摸出的三个球中至少有一个球是黑球
B.摸出的三个球中至少有一个球是白球
C.摸出的三个球中至少有两个球是黑球
D.摸出的三个球中至少有两个球是白球
【答案】A
【详解】
A、是必然事件;
B、是随机事件,选项错误;
C、是随机事件,选项错误;
D、是随机事件,选项错误.
故选A.
10.(2017·富顺县赵化中学校中考真题)下列成语描述的事件为随机事件的是( )
A.水涨船高 B.守株待兔 C.水中捞月 D.缘木求鱼
【答案】B
【解析】试题解析:水涨船高是必然事件,A不正确;
守株待兔是随机事件,B正确;
水中捞月是不可能事件,C不正确
缘木求鱼是不可能事件,D不正确;
故选B.
11.(2019·山东中考真题)从1,2,3,4中任取两个不同的数,分别记为和,则的概率是( )
A. B. C. D.
【答案】D
【详解】
解:画树状图得:
共有种等可能的结果,任取两个不同的数,的有种结果,
的概率是,
故选:.
12.(2016·浙江中考真题)质地均匀的骰子六个面分别刻有1到6的点数,掷两次骰子,得到向上一面的两个点数,则下列事件中,发生可能性最大的是( )
A.点数都是偶数 B.点数的和为奇数
C.点数的和小于13 D.点数的和小于2
【答案】C
【解析】
试题分析:画树状图为:
共有36种等可能的结果数,其中点数都是偶数的结果数为9,点数的和为奇数的结果数为18,点数和小于13的结果数为36,点数和小于2的结果数为0,所以点数都是偶数的概率==,点数的和为奇数的概率==,点数和小于13的概率=1,点数和小于2的概率=0,所以发生可能性最大的是点数的和小于13.故选C.
二、 填空题(共5小题,每小题4分,共20分)
13.(2018·北京中考真题)从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:
公交车用时 公交车用时的频数 线路 | 合计 | ||||
A | 59 | 151 | 166 | 124 | 500 |
B | 50 | 50 | 122 | 278 | 500 |
C | 45 | 265 | 167 | 23 | 500 |
早高峰期间,乘坐_________(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.
【答案】C
【解析】
样本容量相同,C线路上的公交车用时超过分钟的频数最小,所以其频率也最小,故答案为:C.
14.(2018·山东中考真题)有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是_____.
【答案】
【解析】
∵等腰三角形、平行四边形、矩形、正方形、菱形中,平行四边形、矩形、正方形、菱形都是中心对称图形,
∴从中随机抽取一张,卡片上的图形是中心对称图形的概率是:.
故答案为:.
15.(2018·浙江中考真题)小明和小红玩抛硬币游戏,连续抛两次.小明说:“如果两次都是正面,那么你赢;如果两次是一正一反,则我赢.”小红赢的概率是__________,据此判断该游戏__________(填“公平”或“不公平”).
【答案】 不公平
【解答】抛两枚硬币可能会是两正,两反,一正一反、一反一正四种情况;
小红赢的可能性,即都是正面朝上,赢的概率是:
小明赢的可能性,即一正一反的可能性是:
所以游戏对小红不公平.
故答案为: (1). (2). 不公平
16.(2018·内蒙古中考真题)已知函数y=(2k﹣1)x+4(k为常数),若从﹣3≤k≤3中任取k值,则得到的函数是具有性质“y随x增加而增加”的一次函数的概率为_____.
【答案】
【详解】当2k﹣1>0时,
解得:k>,则<k≤3时,y随x增加而增加,
故﹣3≤k<时,y随x增加而减小,
则得到的函数是具有性质“y随x增加而增加”的一次函数的概率为:,
故答案为:.
17.(2018·辽宁中考真题)如图,正六边形内接于⊙O,小明向圆内投掷飞镖一次,则飞镖落在阴影部分的概率是__.
【答案】
【解析】
详解:如图所示:连接OA,
∵正六边形内接于⊙O,
∴△OAB,△OBC都是等边三角形,
∴∠AOB=∠OBC=60°,
∴OC∥AB,
∴S△ABC=S△OBC,
∴S阴=S扇形OBC,
则飞镖落在阴影部分的概率是;
故答案为:.
三、 解答题(共4小题,每小题8分,共32分)
18.(2018·四川中考真题)某网络约车公司近期推出了”520专享”服务计划,即要求公司员工做到“5星级服务、2分钟响应、0客户投诉”,为进一步提升服务品质,公司监管部门决定了解“单次营运里程”的分布情况.老王收集了本公司的5000个“单次营运里程”数据,这些里程数据均不超过25(公里),他从中随机抽取了200个数据作为一个样本,整理、统计结果如下表,并绘制了不完整的频数分布直方图(如图).
组别 | 单次营运里程“x“(公里) | 频数 |
第一组 | 0<x≤5 | 72 |
第二组 | 5<x≤10 | a |
第三组 | 10<x≤15 | 26 |
第四组 | 15<x≤20 | 24 |
第五组 | 20<x≤25 | 30 |
根据统计表、图提供的信息,解答下面的问题:
(1)①表中a= ;②样本中“单次营运里程”不超过15公里的频率为 ;③请把频数分布直方图补充完整;
(2)请估计该公司这5000个“单次营运里程”超过20公里的次数;
(3)为缓解城市交通压力,维护交通秩序,来自某市区的4名网约车司机(3男1女)成立了“交通秩序维护”志愿小分队,若从该小分队中任意抽取两名司机在某一路口维护交通秩序,请用列举法(画树状图或列表)求出恰好抽到“一男一女”的概率.
【答案】(1)①48;②0.73;③补图见解析;(2)750次;(3)恰好抽到“一男一女”的概率为.
【详解】
(1)①由条形图知a=48;
②样本中“单次营运里程”不超过15公里的频率为=0.73;
③补全图形如下:
故答案为:①48;②0.73;
(2)估计该公司这5000个“单次营运里程”超过20公里的次数为5000×=750次;
(3)画树状图为:
共有12种等可能的结果数,其中恰好抽到一男一女的结果数为6,
∴恰好抽到“一男一女”的概率为=.
19.(2018·重庆中考真题)某初中学校举行毛笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题:
(1)请将条形统计图补全;
(2)获得一等奖的同学中有来自七年级,有来自八年级,其他同学均来自九年级,现准备从获得一等奖的同学中任选两人参加市内毛笔书法大赛,请通过列表或画树状图求所选出的两人中既有七年级又有九年级同学的概率.
【答案】(1)答案见解析;(2).
【详解】(1)10÷25%=40(人),
获一等奖人数:40-8-6-12-10=4(人),
补全条形图如图所示:
(2)七年级获一等奖人数:4×=1(人),
八年级获一等奖人数:4×=1(人),
∴ 九年级获一等奖人数:4-1-1=2(人),
七年级获一等奖的同学用M表示,八年级获一等奖的同学用N表示,
九年级获一等奖的同学用P1 、P2表示,树状图如下:
共有12种等可能结果,其中获得一等奖的既有七年级又有九年级人数的结果有4种,
则所选出的两人中既有七年级又有九年级同学的概率P=.
20.(2018·广西中考真题)密码锁有三个转轮,每个转轮上有十个数字:0,1,2,…9.小黄同学是9月份中旬出生,用生日“月份+日期”设置密码:9××
小张同学要破解其密码:
(1)第一个转轮设置的数字是9,第二个转轮设置的数字可能是 .
(2)请你帮小张同学列举出所有可能的密码,并求密码数能被3整除的概率;
(3)小张同学是6月份出生,根据(1)(2)的规律,请你推算用小张生日设置的密码的所有可能个数.
【答案】(1)1或2(2) (3)30种
【详解】
(1)∵小黄同学是9月份中旬出生,∴第一个转轮设置的数字是9,第二个转轮设置的数字可能是1,2.
故答案为:1或2;
(2)所有可能的密码是:911,912,913,914,915,916,917,918,919,920;
能被3整除的有912,915,918;
密码数能被3整除的概率.
(3)小张同学是6月份出生,6月份只有30天,∴第一个转轮设置的数字是6,第二个转轮设置的数字可能是0,1,2,3;第三个转轮设置的数字可能,0,1,2,…9(第二个转轮设置的数字是0时,第三个转轮的数字不能是0;第二个转轮设置的数字是3时,第三个转轮的数字只能是0),∴一共有9+10+10+1=30,∴小张生日设置的密码的所有可能个数为30种.
21.(2018·贵州中考真题)某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向A区域时,所购买物品享受9折优惠、指针指向其它区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其它情况无优惠.在每个转盘中,指针指向每个区城的可能性相同(若指针指向分界线,则重新转动转盘)
(1)若顾客选择方式一,则享受9折优惠的概率为多少;
(2)若顾客选择方式二,请用树状图或列表法列出所有可能,并求顾客享受8折优惠的概率.
【答案】(1)享受9折优惠的概率为;(2)顾客享受8折优惠的概率为.
【详解】
(1)若选择方式一,转动转盘甲一次共有四种等可能结果,其中指针指向A区域只有1种情况,
∴享受9折优惠的概率为;
(2)画树状图如下:
由树状图可知共有12种等可能结果,其中指针指向每个区域的字母相同的有2种结果,
所以指针指向每个区域的字母相同的概率,即顾客享受8折优惠的概率为=.