还剩20页未读,
继续阅读
人教版七年级数学上册期末压轴题专项突破:数轴动点类和角度的旋转 解析版
展开
人教版七年级数学上册期末压轴题专项突破
数轴动点类和角度的旋转
数轴动点:
1.点A,B为数轴上的两点,点A对应的数为a,点B对应的数为3,a3=﹣8.
(1)求A,B两点之间的距离;
(2)若点C为数轴上的一个动点,其对应的数记为x,试猜想当x满足什么条件时,点C到A点的距离与点C到B点的距离之和最小.请写出你的猜想,并说明理由;
(3)若P,Q为数轴上的两个动点(Q点在P点右侧),P,Q两点之间的距离为m,当点P到A点的距离与点Q到B点的距离之和有最小值4时,m的值为 .
2.已知A,B,C三点在数轴上的位置如图所示,它们表示的数分别是a,b,c.
(1)填空:abc 0,a+b 0:(填“>”,“=”或“<”)
(2)若a=﹣2且点B到点A,C的距离相等,
①当b2=16时,求c的值;
②P是数轴上B,C两点之间的一个动点,设点P表示的数为x,当P点在运动过程中,bx+cx+|x﹣c|﹣10|x+a|的值保持不变,则b的值为 .
3.已知数轴上两点A,B对应的数分别为﹣8和4,点P为数轴上一动点,若规定:点P到A的距离是点P到B的距离的3倍时,我们就称点P是关于A→B的“好点”.
(1)若点P到点A的距离等于点P到点B的距离时,求点P表示的数是多少;
(2)①若点P运动到原点O时,此时点P 关于A→B的“好点”(填是或者不是);
②若点P以每秒1个单位的速度从原点O开始向右运动,当点P是关于A→B的“好点”时,求点P的运动时间;
(3)若点P在原点的左边(即点P对应的数为负数),且点P,A,B中,其中有一个点是关于其它任意两个点的“好点”,请直接写出所有符合条件的点P表示的数.
4.如图,在数轴上,点A表示﹣10,点B表示11,点C表示18.动点P从点A出发,沿数轴正方向以每秒2个单位的速度匀速运动;同时,动点Q从点C出发,沿数轴负方向以每秒1个单位的速度匀速运动.设运动时间为t秒.
(1)当t为何值时,P、Q两点相遇?相遇点M所对应的数是多少?
(2)在点Q出发后到达点B之前,求t为何值时,点P到点O的距离与点Q到点B的距离相等;
(3)在点P向右运动的过程中,N是AP的中点,在点P到达点C之前,求2CN﹣PC的值.
5.如图所示,在数轴上点A表示的数是4,点B位于点A的左侧,与点A的距离是10个单位长度.
(1)点B表示的数是 ,并在数轴上将点B表示出来.
(2)动点P从点B出发,沿着数轴的正方向以每秒2个单位长度的速度运动.经过多少秒点P与点A的距离是2个单位长度?
(3)在(2)的条件下,点P出发的同时,点Q也从点A出发,沿着数轴的负方向,以1个单位每秒的速度运动.经过多少秒,点Q到点B的距离是点P到点A的距离的2倍?
6.如图所示,一个点从数轴上的原点开始,先向右移动2个单位长度,再向左移动5个单位长度,可以看到终点表示是﹣3,已知A、B是数轴上的点,请参照图并思考,完成下列各题.
(1)如果点A表示的数﹣3,将点A向右移动5个单位长度,那么终点B表示的数是 .A、B两点间的距离是 .
(2)如果点A表示的数3,将点A向左移动3个单位长度,再向右移动6个单位长度,那么终点B表示的数是 .A、B两点间的距离是 .
(3)如果点A表示的数x,将点A向右移动p个单位长度,再向左移动n个单位长度,那么请你猜想终点B表示的数是 .A、B两点间的距离是 .
7.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:
(1)动点P从点A运动至C点需要多少时间?
(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;
(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.
8.阅读下面的材料:
如图1,在数轴上A点所示的数为a,B点表示的数为b,则点A到点B的距离记为AB.线段AB的长可以用右边的数减去左边的数表示,即AB=b﹣a.
请用上面的知识解答下面的问题:
如图2,一个点从数轴上的原点开始,先向左移动1cm到达A点,再向左移动2cm到达B点,然后向右移动7cm到达C点,用1个单位长度表示1cm.
(1)请你在数轴上表示出A.B.C三点的位置:
(2)点C到点A的距离CA= cm;若数轴上有一点D,且AD=4,则点D表示的数为 ;
(3)若将点A向右移动xcm,则移动后的点表示的数为 ;(用代数式表示)
(4)若点B以每秒2cm的速度向左移动,同时A.C点分别以每秒1cm、4cm的速度向右移动.设移动时间为t秒,
试探索:CA﹣AB的值是否会随着t的变化而改变?请说明理由.
角度的旋转:
9.已知O为直线AB上的一点,∠COE是直角,OF平分∠AOE(图中所说的角都是小于平角的角).
(1)如图1,若∠COF=58°,求∠BOE的度数;
(2)将∠COE绕点O顺时针旋转到如图2所示的位置时,若∠COF=m°,求∠BOE的度数(用含字母m的代数式表示).
10.如图,以点O为端点按顺时针方向依次作射线OA、OB、OC、OD.
(1)若∠AOC、∠BOD都是直角,∠BOC=60°,求∠AOB和∠DOC的度数.
(2)若∠BOD=100°,∠AOC=110°,且∠AOD=∠BOC+70°,求∠COD的度数.
(3)若∠AOC=∠BOD=α,当α为多少度时,∠AOD和∠BOC互余?并说明理由.
11.已知∠AOB=90°,OC是一条可以绕点O转动的射线,ON平分∠AOC,OM平分∠BOC.
(1)当射线OC转动到∠AOB的内部时,如图1,求∠MON的度数.
(2)当射线OC转动到∠AOB的外时(90°<∠BOC<∠180°),如图2,∠MON的大小是否发生变化?变或者不变均说明理由.
12.如图,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.
(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.如图,经过t秒后,OM恰好平分∠BOC.求t的值;并判断此时ON是否平分∠AOC?请说明理由;
(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图,那么经过多长时间OC平分∠MON?请说明理由.
13.如图,已知∠AOC=∠BOD=120°,∠BOC=∠AOD.
(1)求∠AOD的度数;
(2)若射线OB绕点O以每秒旋转20°的速度顺时针旋转,同时射线OC以每秒旋转15°的速度逆时针旋转,设旋转的时间为t秒(0<t<6),试求当∠BOC=20°时t的值;
(3)若∠AOB绕点O以每秒旋转5°的速度逆时针旋转,同时∠COD绕点O以每秒旋转10°的速度逆时针旋转,设旋转的时间为t秒(0<t<18),OM平分∠AOC,ON平分∠BOD,在旋转的过程中,∠MON的度数是否发生改变?若不变,求出其值:若改变,说明理由.
14. 已知∠AOB=90°,∠COD=60°,按如图1所示摆放,将OA、OC边重合在直线MN上,OB、OD边在直线MN的两侧:
(1)保持∠AOB不动,将∠COD绕点O旋转至如图2所示的位置,则
①∠AOC+∠BOD= ;
②∠BOC﹣∠AOD= .
(2)若∠COD按每分钟5°的速度绕点O逆时针方向旋转,∠AOB按每分钟2°的速度也绕点O逆时针方向旋转,OC旋转到射线ON上时都停止运动,设旋转t分钟,计算∠MOC﹣∠AOD(用t的代数式表示).
(3)保持∠AOB不动,将∠COD绕点O逆时针方向旋转n°(n≤360),若射线OE平分∠AOC,射线OF平分∠BOD,求∠EOF的大小.
15.已知直角三角板ABC和直角三角板DEF,∠ACB=∠EDF=90°,∠ABC=60°,∠DEF=45°.
(1)如图1.将顶点C和顶点D重合.保持三角板ABC不动,将三角板DEF绕点C旋转,当CF平分∠ACB时,求∠ACE的度数;
(2)在(1)的条件下,继续旋转三角板DEF,猜想∠ACE与∠BCF有怎样的数量关系?并利用图2所给的情形说明理由;
(3)如图3,将顶点C和顶点E重合,保持三角板ABC不动,将三角板DEF绕点C旋转.当CA落在∠DCF内部时,直接写出∠ACD与∠BCF之间的数量关系.
16.已知:O为直线AB上的一点,以O为观察中心,射线OA表示正北方向,ON表示正东方向(即AB⊥MN),射线OC,射线OE的方向如各图所示.
(1)如图1所示,当∠COE=90°时:
①若∠AOE=20°,则射线OE的方向是 .
②∠AOE与∠CON的关系为 .
③∠AOC与∠EON的关系为 .
(2)若将射线OC,射线OE绕点O旋转至图2的位置,另一条射线OF恰好平分∠COM,旋转中始终保持∠COE=90°.
①若∠AOF=24°,则∠EOF= 度.
②若∠AOF=β,则∠CON= (用含β的代数式表示).
(3)若将射线OC,射线OE绕点O旋转至图3的位置,射线OF仍然平分∠COM,旋转中始终保持∠COE=90°,则∠CON与∠AOF之间存在怎样的数量关系,并说明理由.
参考答案
数轴动点
1.解:(1)∵a3=﹣8.
∴a=﹣2,
∴AB=|3﹣(﹣2)|=5;
(2)点C到A的距离为|x+2|,点C到B的距离为|x﹣3|,
∴点C到A点的距离与点C到B点的距离之和为|x+2|+|x﹣3|,
当距离之和|x+2|+|x﹣3|的值最小,﹣2<x<3,
此时的最小值为3﹣(﹣2)=5,
∴当﹣2<x<3时,点C到A点的距离与点C到B点的距离之和最小,最小值为5;
(3)设点P所表示的数为x,
∵PQ=m,Q点在P点右侧,
∴点Q所表示的数为x+m,
∴PA=|x+2|,QB=|x+m﹣3|
∴点P到A点的距离与点Q到B点的距离之和为:PA+QB=|x+2|+|x+m﹣3|
当x在﹣2与3﹣m之间时,|x+2|+|x+m﹣3|最小,最小值为|﹣2﹣(3﹣m)|=4,
①﹣2﹣(3﹣m)=4,解得,m=9,
②(3﹣m)﹣(﹣2)=4时,解得,m=1,
故答案为:1或9.
2.解:(1)由a,b,c.在数轴上的位置可知,a<0,0<b<c,
∴abc<0,a+b>0,
故答案为:<>,
(2)①b2=16,b>0,
∴b=4,
∵a=﹣2,BC=AB,
∴c﹣4=4﹣(﹣2),
∴c=10;
②设点P表示的数为x,点P在BC上,因此b<x<c,
∴bx+cx+|x﹣c|﹣10|x+a|=bx+cx+c﹣x﹣10x﹣10a=(b+c﹣10﹣1)x+c﹣10a,
∵结果与x无关,
∴b+c=11,
又∵c﹣b=b+2,即,c=2b+2,
∴b=3,
故答案为:3.
3.解:(1)∵数轴上两点A,B对应的数分别为﹣8和4,
∴AB=4﹣(﹣8)=12,
∵点P到点A、点B的距离相等,
∴P为AB的中点,
∴BP=PA=AB=6,
∴点P表示的数是﹣2;
(2)①当点P运动到原点O时,PA=8,PB=4,
∵PA≠3PB,
∴点P不是关于A→B的“好点”;
故答案为:不是;
②根据题意可知:设点P运动的时间为t秒,
PA=t+8,PB=|4﹣t|,
∴t+8=3|4﹣t|,
解得t=1或t=10,
所以点P的运动时间为1秒或10秒;
(3)根据题意可知:设点P表示的数为n,
PA=n+8或﹣n﹣8,PB=4﹣n,AB=12,
分五种情况进行讨论:
①当点A是关于P→B的“好点”时,
|PA|=3|AB|,
即﹣n﹣8=36,解得n=﹣44;
②当点A是关于B→P的“好点”时,
|AB|=3|AP|,
即3(﹣n﹣8)=12,解得n=﹣12;
或3(n+8)=12,解得n=﹣4;
③当点P是关于A→B的“好点”时,
|PA|=3|PB|,
即﹣n﹣8=3(4﹣n)或n+8=3(4﹣n),解得n=10或1(不符合题意,舍去);
④当点P是关于B→A的“好点”时,
|PB|=3|AP|,
即4﹣n=3(n+8),解得n=﹣5;
或4﹣n=3(﹣n﹣8),解得n=﹣14;
⑤当点B是关于P→A的“好点”时,
|PB|=3|AB|,
即4﹣n=36,解得n=﹣32.
综上所述:所有符合条件的点P表示的数是:﹣4,﹣5,﹣12,﹣14,﹣32,﹣44.
4.解:(1)根据题意得2t+t=28,
解得t=,
∴AM=>10,
∴M在O的右侧,且OM=﹣10=,
∴当t=时,P、Q两点相遇,相遇点M所对应的数是;
(2)由题意得,t的值大于0且小于7.
若点P在点O的左边,则10﹣2t=7﹣t,解得t=3.
若点P在点O的右边,则2t﹣10=7﹣t,解得t=.
综上所述,t的值为3或时,点P到点O的距离与点Q到点B的距离相等;
(3)∵N是AP的中点,
∴AN=PN=AP=t,
∴CN=AC﹣AN=28﹣t,PC=28﹣AP=28﹣2t,
2CN﹣PC=2(28﹣t)﹣(28﹣2t)=28.
5.解:(1)10﹣4=6,
∵点B位于点A的左侧,
∴点B表示的数是﹣6,
故答案为:﹣6.
在数轴上将点B表示如图所示:
(2)设经过多少秒点P与点A的距离是2个单位长度,
∴2t+2=10或2t﹣2=10
∴t=4或t=6
∴经过4秒或6秒点P与点A的距离是2个单位长度;
(3)设经过t秒,点Q到点B的距离是点P到点A的距离的2倍,
∴2(10﹣2t)=10﹣t或2(2t﹣10)=10﹣t
∴t=或t=6
∴经过秒或6秒,点Q到点B的距离是点P到点A的距离的2倍.
6.解:(1)∵﹣3+5=2,
∴B表示的数为2,A、B两点间的距离为2﹣(﹣3)=5,
故答案为:2,5;
(2)∵3﹣3+6=6,
∴B表示的数为6,A、B两点间的距离为6﹣3=3,
故答案为:6,3;
(3)根据题意,点B表示的数为x+p﹣n,A、B两点间的距离为|x+p﹣n﹣x|=|p﹣n|,
故答案为:x+p﹣n,|p﹣n|.
7.解:(1)点P运动至点C时,所需时间t=10÷2+10÷1+8÷2=19(秒),
(2)由题可知,P、Q两点相遇在线段OB上于M处,设OM=x.
则10÷2+x÷1=8÷1+(10﹣x)÷2,
解得x=.
故相遇点M所对应的数是.
(3)P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等有4种可能:
①动点Q在CB上,动点P在AO上,则:8﹣t=10﹣2t,解得:t=2.
②动点Q在CB上,动点P在OB上,则:8﹣t=(t﹣5)×1,解得:t=6.5.
③动点Q在BO上,动点P在OB上,则:2(t﹣8)=(t﹣5)×1,解得:t=11.
④动点Q在OA上,动点P在BC上,则:10+2(t﹣15)=t﹣13+10,解得:t=17.
综上所述:t的值为2、6.5、11或17.
8.解:(1)如图所示:
(2)CA=4﹣(﹣1)=4+1=5(cm);
设D表示的数为a,
∵AD=4,
∴|﹣1﹣a|=4,
解得:a=﹣5或3,
∴点D表示的数为﹣5或3;
故答案为:5,﹣5或3;
(3)将点A向右移动xcm,则移动后的点表示的数为﹣1+x;
故答案为:﹣1+x;
(4)CA﹣AB的值不会随着t的变化而变化,理由如下:
根据题意得:CA=(4+4t)﹣(﹣1+t)=5+3t,AB=(﹣1+t)﹣(﹣3﹣2t)=2+3t,
∴CA﹣AB=(5+3t)﹣(2+3t)=3,
∴CA﹣AB的值不会随着t的变化而变化.
角度的旋转
9.解:(1)∵∠COE是直角,∠COF=58°,
∴∠EOF=90°﹣58°=32°.
∵OF平分∠AOE,
∴∠AOE=2∠EOF=64°,
∴∠BOE=180°﹣64°=116°.
答:∠BOE的度数为116°;
(2)∵∠COF=m°,
∴∠EOF=m°﹣90°.
又∵OF平分∠AOE,
∴∠AOE=2∠EOF=2m°﹣180°,
∴∠BOE=180°﹣(2m°﹣180°)=360°﹣2m°.
答:∠BOE的度数为360°﹣2m°.
10.解:(1)∵∠AOC=90°,∠BOD=90°,∠BOC=60°,
∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,
∠DOC=∠BOD﹣∠BOC=90°﹣60°=30°;
(2)设∠COD=x°,则∠BOC=100°﹣x°,
∵∠AOC=110°,
∴∠AOB=110°﹣(100°﹣x°)=x°+10°,
∵∠AOD=∠BOC+70°,
∴100°+10°+x°=100°﹣x°+70°,
解得:x=30
即,∠COD=30°;
(3)当α=45°时,∠AOD与∠BOC互余;
理由是:
要使∠AOD与∠BOC互余,即∠AOD+∠BOC=90°,
∴∠AOB+∠BOC+∠COD+∠BOC=90°,
即∠AOC+∠BOD=90°,
∵∠AOC=∠BOD=α,
∴∠AOC=∠BOD=45°,
即α=45°,
∴当α=45°时,∠AOD与∠BOC互余.
11.解:(1)如图1所示:
∵ON平分∠AOC,
∴∠CON=,
又∵OM平分∠BOC,
∴∠COM=,
又∵∠AOB=∠AOC+∠BOC=90°,
∴∠MON=∠CON+∠COM
=
=
=45°;
(2)∠MON的大小不变,如图2所示,理由如下:
∵OM平分∠BOC,
∴∠MOC=,
又∵ON平分∠AOC,
∴∠AON=,
又∵∠MON=∠AON+∠AOM,
∴∠MON=
=
=
=45°.
12.解:(1)旋转前∠MOC=90°﹣∠AOC=60°,
当OM平分∠BOC时,,
3t=75°﹣60°,
t=5s,
结论:ON平分∠AOC,
理由:∵∠CON=90°﹣∠MOC,∠AOC=180°﹣∠BOC=2(90°﹣∠MOC),
∴∠AOC=2∠CON,
∴ON平分∠AOC
(2)∠MOC=∠AOM﹣∠AOC=(3t+90°)﹣(30°+6t)=60°﹣3t
若OC平分∠MON
则,
∴60°﹣3t=45°,
∴t=5.
13.解:如图所示:
(1)设∠AOD=5x°,
∵∠BOC=∠AOD
∴∠BOC=•5x°=3x°
又∵∠AOC=∠AOB+∠BOC,∠BOD=∠DOC+∠BOC,
∠AOD=∠AOB+∠BOC+∠DOC,
∴∠AOC+∠BOD=∠AOD+∠BOC,
又∵∠AOC=∠BOD=120°,
∴5x+3x=240
解得:x=30°
∴∠AOD=150°;
(2)∵∠AOD=150°,∠BOC=∠AOD,
∴∠BOC=90°,
①若线段OB、OC重合前相差20°,则有:
20t+15t+20=90,
解得:t=2,
②若线段OB、OC重合后相差20°,则有:
20t+15t﹣90=20
解得:,
又∵0<t<6,
∴t=2或t=;
(3)∠MON的度数不会发生改变,∠MON=30°,理由如下:
∵旋转t秒后,∠AOD=150°﹣5t°,∠AOC=120°﹣5t°,∠BOD=120°﹣5t°
∵OM、ON分别平分∠AOC、∠BOD
∴∠AOM=∠AOC=,
∠DON==
∴∠MON=∠AOD﹣∠AOM﹣∠DON
=150°﹣5t°﹣﹣
=30°.
14.解:(1)①∠AOC+∠BOD
=∠AOC+∠AOD+∠AOB
=∠COD+∠AOB
=60°+90°
=150°;
②∠BOC﹣∠AOD
=(∠AOB﹣∠AOC)﹣(∠COD﹣∠AOC)
=∠AOB﹣∠AOC﹣∠COD+∠AOC
=∠AOB﹣∠COD
=90°﹣60°
=30°;
故答案为:150°、30°;
(2)设运动时间为t秒,0<t≤36,∠MOC=(5t)°,
①0<t≤20时,OD与OA相遇前,∠AOD=(60+2t﹣5t)°=(60﹣3t)°,
∴∠MOC﹣∠AOD=(8t﹣60)°;
②20<t≤36时,OD与OA相遇后,∠AOD=[5t﹣(60+2t)]°=(3t﹣60)°,
∴∠MOC﹣∠AOD=(2t+60)°;
(3)设OC绕点O逆时针旋转n°,则OD也绕点O逆时针旋转n°,
①0<n°≤150°时,如图4,
射线OE、OF在射线OB同侧,在直线MN同侧,
∵∠BOF=[90°﹣(n﹣60°)]=(150﹣n)°,∠BOE=(90﹣n)°=(180﹣n)°,
∴∠EOF=∠BOE﹣∠BOF=15°;
②150°<n°≤180°时,如图5,
射线OE、OF在射线OB异侧,在直线MN同侧,
∵°,∠BOE=(90﹣n)°=(180﹣n)°,
∴∠EOF=∠BOE+∠BOF=15°;
③180°<n°≤330°时,如图6,
射线OE、OF在射线OB异侧,在直线MN异侧,
∵°,°,
∴∠EOF=∠DOF+∠COD+∠COE=165°;
④330°<n°≤360°时,如图7,
射线OE、OF在射线OB同侧,在直线MN异侧,
∵∠DOF=[360﹣(n﹣150)]°=(510﹣n)°,°,
∴∠EOF=∠DOF﹣∠COD﹣∠COE=15°;
综上,∠EOF=15°或165°.
15.解:(1)∵CF平分∠ACB,
∴∠BCF=∠ACF=∠ACB=×90°=45°,
∴∠ACE=∠ECF﹣∠ACF=90°﹣45°=45°;
(2)∠ACE=∠BCF,
∵∠BCF+∠ACF=90°=∠ACE+ACF,
∴∠ACE=∠BCF;
(3)∠BCF﹣∠ACD=45°,
∵∠ACF+∠BCF=90°,∠ACD+∠ACF=∠DCF=45°,
∴(∠ACF+∠BCF)﹣(∠ACD+∠ACF)=90°﹣45°,
即:∠BCF﹣∠ACD=45°.
16.解:(1)如图1①由方位角的表示方法得,射线OE的方向是北偏东20°,故答案为:北偏东20°;
②∵∠AOE+∠EON=∠CON+∠EON=90°,
∴∠AOE=∠CON;
故答案为:∠AOE=∠CON;
③∵∠AOE+∠EON=∠CON+∠BOC,
∴∠EON=∠BOC,
∵∠AOC+∠BOC=180°,
∴∠AOC+∠EON=180°,
故答案为:∠AOC+∠EON=180°,
(2)如图2,①∵∠COE=90°.
∴∠AOC+∠AOE=90°=∠AOE+∠EOM,
∴∠AOC=∠EOM,
∵OF恰好平分∠COM,
∴∠MOF=∠OCF,即:∠MOE+∠EOF=∠AOC+∠AOF,
∴∠EOF=∠AOF=24°
故答案为:24°
②∵∠CON+∠AOC=90°=∠AOC+∠AOE,
∴∠CON=∠AOE,
∵∠EOF=∠AOF=β,
∴∠CON=2∠AOF=2β;
故答案为:2β.
(3)如图3,由同角的余角相等可得∠COM=∠BOE,
∴∠CON=∠AOE,
∵OF平分∠COM,
∴∠COF=∠MOF,
∴∠CON=∠AOE=2∠COF+2∠AOC=2∠AOF,
∴∠CON=2∠AOF.
数轴动点类和角度的旋转
数轴动点:
1.点A,B为数轴上的两点,点A对应的数为a,点B对应的数为3,a3=﹣8.
(1)求A,B两点之间的距离;
(2)若点C为数轴上的一个动点,其对应的数记为x,试猜想当x满足什么条件时,点C到A点的距离与点C到B点的距离之和最小.请写出你的猜想,并说明理由;
(3)若P,Q为数轴上的两个动点(Q点在P点右侧),P,Q两点之间的距离为m,当点P到A点的距离与点Q到B点的距离之和有最小值4时,m的值为 .
2.已知A,B,C三点在数轴上的位置如图所示,它们表示的数分别是a,b,c.
(1)填空:abc 0,a+b 0:(填“>”,“=”或“<”)
(2)若a=﹣2且点B到点A,C的距离相等,
①当b2=16时,求c的值;
②P是数轴上B,C两点之间的一个动点,设点P表示的数为x,当P点在运动过程中,bx+cx+|x﹣c|﹣10|x+a|的值保持不变,则b的值为 .
3.已知数轴上两点A,B对应的数分别为﹣8和4,点P为数轴上一动点,若规定:点P到A的距离是点P到B的距离的3倍时,我们就称点P是关于A→B的“好点”.
(1)若点P到点A的距离等于点P到点B的距离时,求点P表示的数是多少;
(2)①若点P运动到原点O时,此时点P 关于A→B的“好点”(填是或者不是);
②若点P以每秒1个单位的速度从原点O开始向右运动,当点P是关于A→B的“好点”时,求点P的运动时间;
(3)若点P在原点的左边(即点P对应的数为负数),且点P,A,B中,其中有一个点是关于其它任意两个点的“好点”,请直接写出所有符合条件的点P表示的数.
4.如图,在数轴上,点A表示﹣10,点B表示11,点C表示18.动点P从点A出发,沿数轴正方向以每秒2个单位的速度匀速运动;同时,动点Q从点C出发,沿数轴负方向以每秒1个单位的速度匀速运动.设运动时间为t秒.
(1)当t为何值时,P、Q两点相遇?相遇点M所对应的数是多少?
(2)在点Q出发后到达点B之前,求t为何值时,点P到点O的距离与点Q到点B的距离相等;
(3)在点P向右运动的过程中,N是AP的中点,在点P到达点C之前,求2CN﹣PC的值.
5.如图所示,在数轴上点A表示的数是4,点B位于点A的左侧,与点A的距离是10个单位长度.
(1)点B表示的数是 ,并在数轴上将点B表示出来.
(2)动点P从点B出发,沿着数轴的正方向以每秒2个单位长度的速度运动.经过多少秒点P与点A的距离是2个单位长度?
(3)在(2)的条件下,点P出发的同时,点Q也从点A出发,沿着数轴的负方向,以1个单位每秒的速度运动.经过多少秒,点Q到点B的距离是点P到点A的距离的2倍?
6.如图所示,一个点从数轴上的原点开始,先向右移动2个单位长度,再向左移动5个单位长度,可以看到终点表示是﹣3,已知A、B是数轴上的点,请参照图并思考,完成下列各题.
(1)如果点A表示的数﹣3,将点A向右移动5个单位长度,那么终点B表示的数是 .A、B两点间的距离是 .
(2)如果点A表示的数3,将点A向左移动3个单位长度,再向右移动6个单位长度,那么终点B表示的数是 .A、B两点间的距离是 .
(3)如果点A表示的数x,将点A向右移动p个单位长度,再向左移动n个单位长度,那么请你猜想终点B表示的数是 .A、B两点间的距离是 .
7.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:
(1)动点P从点A运动至C点需要多少时间?
(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;
(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.
8.阅读下面的材料:
如图1,在数轴上A点所示的数为a,B点表示的数为b,则点A到点B的距离记为AB.线段AB的长可以用右边的数减去左边的数表示,即AB=b﹣a.
请用上面的知识解答下面的问题:
如图2,一个点从数轴上的原点开始,先向左移动1cm到达A点,再向左移动2cm到达B点,然后向右移动7cm到达C点,用1个单位长度表示1cm.
(1)请你在数轴上表示出A.B.C三点的位置:
(2)点C到点A的距离CA= cm;若数轴上有一点D,且AD=4,则点D表示的数为 ;
(3)若将点A向右移动xcm,则移动后的点表示的数为 ;(用代数式表示)
(4)若点B以每秒2cm的速度向左移动,同时A.C点分别以每秒1cm、4cm的速度向右移动.设移动时间为t秒,
试探索:CA﹣AB的值是否会随着t的变化而改变?请说明理由.
角度的旋转:
9.已知O为直线AB上的一点,∠COE是直角,OF平分∠AOE(图中所说的角都是小于平角的角).
(1)如图1,若∠COF=58°,求∠BOE的度数;
(2)将∠COE绕点O顺时针旋转到如图2所示的位置时,若∠COF=m°,求∠BOE的度数(用含字母m的代数式表示).
10.如图,以点O为端点按顺时针方向依次作射线OA、OB、OC、OD.
(1)若∠AOC、∠BOD都是直角,∠BOC=60°,求∠AOB和∠DOC的度数.
(2)若∠BOD=100°,∠AOC=110°,且∠AOD=∠BOC+70°,求∠COD的度数.
(3)若∠AOC=∠BOD=α,当α为多少度时,∠AOD和∠BOC互余?并说明理由.
11.已知∠AOB=90°,OC是一条可以绕点O转动的射线,ON平分∠AOC,OM平分∠BOC.
(1)当射线OC转动到∠AOB的内部时,如图1,求∠MON的度数.
(2)当射线OC转动到∠AOB的外时(90°<∠BOC<∠180°),如图2,∠MON的大小是否发生变化?变或者不变均说明理由.
12.如图,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.
(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.如图,经过t秒后,OM恰好平分∠BOC.求t的值;并判断此时ON是否平分∠AOC?请说明理由;
(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图,那么经过多长时间OC平分∠MON?请说明理由.
13.如图,已知∠AOC=∠BOD=120°,∠BOC=∠AOD.
(1)求∠AOD的度数;
(2)若射线OB绕点O以每秒旋转20°的速度顺时针旋转,同时射线OC以每秒旋转15°的速度逆时针旋转,设旋转的时间为t秒(0<t<6),试求当∠BOC=20°时t的值;
(3)若∠AOB绕点O以每秒旋转5°的速度逆时针旋转,同时∠COD绕点O以每秒旋转10°的速度逆时针旋转,设旋转的时间为t秒(0<t<18),OM平分∠AOC,ON平分∠BOD,在旋转的过程中,∠MON的度数是否发生改变?若不变,求出其值:若改变,说明理由.
14. 已知∠AOB=90°,∠COD=60°,按如图1所示摆放,将OA、OC边重合在直线MN上,OB、OD边在直线MN的两侧:
(1)保持∠AOB不动,将∠COD绕点O旋转至如图2所示的位置,则
①∠AOC+∠BOD= ;
②∠BOC﹣∠AOD= .
(2)若∠COD按每分钟5°的速度绕点O逆时针方向旋转,∠AOB按每分钟2°的速度也绕点O逆时针方向旋转,OC旋转到射线ON上时都停止运动,设旋转t分钟,计算∠MOC﹣∠AOD(用t的代数式表示).
(3)保持∠AOB不动,将∠COD绕点O逆时针方向旋转n°(n≤360),若射线OE平分∠AOC,射线OF平分∠BOD,求∠EOF的大小.
15.已知直角三角板ABC和直角三角板DEF,∠ACB=∠EDF=90°,∠ABC=60°,∠DEF=45°.
(1)如图1.将顶点C和顶点D重合.保持三角板ABC不动,将三角板DEF绕点C旋转,当CF平分∠ACB时,求∠ACE的度数;
(2)在(1)的条件下,继续旋转三角板DEF,猜想∠ACE与∠BCF有怎样的数量关系?并利用图2所给的情形说明理由;
(3)如图3,将顶点C和顶点E重合,保持三角板ABC不动,将三角板DEF绕点C旋转.当CA落在∠DCF内部时,直接写出∠ACD与∠BCF之间的数量关系.
16.已知:O为直线AB上的一点,以O为观察中心,射线OA表示正北方向,ON表示正东方向(即AB⊥MN),射线OC,射线OE的方向如各图所示.
(1)如图1所示,当∠COE=90°时:
①若∠AOE=20°,则射线OE的方向是 .
②∠AOE与∠CON的关系为 .
③∠AOC与∠EON的关系为 .
(2)若将射线OC,射线OE绕点O旋转至图2的位置,另一条射线OF恰好平分∠COM,旋转中始终保持∠COE=90°.
①若∠AOF=24°,则∠EOF= 度.
②若∠AOF=β,则∠CON= (用含β的代数式表示).
(3)若将射线OC,射线OE绕点O旋转至图3的位置,射线OF仍然平分∠COM,旋转中始终保持∠COE=90°,则∠CON与∠AOF之间存在怎样的数量关系,并说明理由.
参考答案
数轴动点
1.解:(1)∵a3=﹣8.
∴a=﹣2,
∴AB=|3﹣(﹣2)|=5;
(2)点C到A的距离为|x+2|,点C到B的距离为|x﹣3|,
∴点C到A点的距离与点C到B点的距离之和为|x+2|+|x﹣3|,
当距离之和|x+2|+|x﹣3|的值最小,﹣2<x<3,
此时的最小值为3﹣(﹣2)=5,
∴当﹣2<x<3时,点C到A点的距离与点C到B点的距离之和最小,最小值为5;
(3)设点P所表示的数为x,
∵PQ=m,Q点在P点右侧,
∴点Q所表示的数为x+m,
∴PA=|x+2|,QB=|x+m﹣3|
∴点P到A点的距离与点Q到B点的距离之和为:PA+QB=|x+2|+|x+m﹣3|
当x在﹣2与3﹣m之间时,|x+2|+|x+m﹣3|最小,最小值为|﹣2﹣(3﹣m)|=4,
①﹣2﹣(3﹣m)=4,解得,m=9,
②(3﹣m)﹣(﹣2)=4时,解得,m=1,
故答案为:1或9.
2.解:(1)由a,b,c.在数轴上的位置可知,a<0,0<b<c,
∴abc<0,a+b>0,
故答案为:<>,
(2)①b2=16,b>0,
∴b=4,
∵a=﹣2,BC=AB,
∴c﹣4=4﹣(﹣2),
∴c=10;
②设点P表示的数为x,点P在BC上,因此b<x<c,
∴bx+cx+|x﹣c|﹣10|x+a|=bx+cx+c﹣x﹣10x﹣10a=(b+c﹣10﹣1)x+c﹣10a,
∵结果与x无关,
∴b+c=11,
又∵c﹣b=b+2,即,c=2b+2,
∴b=3,
故答案为:3.
3.解:(1)∵数轴上两点A,B对应的数分别为﹣8和4,
∴AB=4﹣(﹣8)=12,
∵点P到点A、点B的距离相等,
∴P为AB的中点,
∴BP=PA=AB=6,
∴点P表示的数是﹣2;
(2)①当点P运动到原点O时,PA=8,PB=4,
∵PA≠3PB,
∴点P不是关于A→B的“好点”;
故答案为:不是;
②根据题意可知:设点P运动的时间为t秒,
PA=t+8,PB=|4﹣t|,
∴t+8=3|4﹣t|,
解得t=1或t=10,
所以点P的运动时间为1秒或10秒;
(3)根据题意可知:设点P表示的数为n,
PA=n+8或﹣n﹣8,PB=4﹣n,AB=12,
分五种情况进行讨论:
①当点A是关于P→B的“好点”时,
|PA|=3|AB|,
即﹣n﹣8=36,解得n=﹣44;
②当点A是关于B→P的“好点”时,
|AB|=3|AP|,
即3(﹣n﹣8)=12,解得n=﹣12;
或3(n+8)=12,解得n=﹣4;
③当点P是关于A→B的“好点”时,
|PA|=3|PB|,
即﹣n﹣8=3(4﹣n)或n+8=3(4﹣n),解得n=10或1(不符合题意,舍去);
④当点P是关于B→A的“好点”时,
|PB|=3|AP|,
即4﹣n=3(n+8),解得n=﹣5;
或4﹣n=3(﹣n﹣8),解得n=﹣14;
⑤当点B是关于P→A的“好点”时,
|PB|=3|AB|,
即4﹣n=36,解得n=﹣32.
综上所述:所有符合条件的点P表示的数是:﹣4,﹣5,﹣12,﹣14,﹣32,﹣44.
4.解:(1)根据题意得2t+t=28,
解得t=,
∴AM=>10,
∴M在O的右侧,且OM=﹣10=,
∴当t=时,P、Q两点相遇,相遇点M所对应的数是;
(2)由题意得,t的值大于0且小于7.
若点P在点O的左边,则10﹣2t=7﹣t,解得t=3.
若点P在点O的右边,则2t﹣10=7﹣t,解得t=.
综上所述,t的值为3或时,点P到点O的距离与点Q到点B的距离相等;
(3)∵N是AP的中点,
∴AN=PN=AP=t,
∴CN=AC﹣AN=28﹣t,PC=28﹣AP=28﹣2t,
2CN﹣PC=2(28﹣t)﹣(28﹣2t)=28.
5.解:(1)10﹣4=6,
∵点B位于点A的左侧,
∴点B表示的数是﹣6,
故答案为:﹣6.
在数轴上将点B表示如图所示:
(2)设经过多少秒点P与点A的距离是2个单位长度,
∴2t+2=10或2t﹣2=10
∴t=4或t=6
∴经过4秒或6秒点P与点A的距离是2个单位长度;
(3)设经过t秒,点Q到点B的距离是点P到点A的距离的2倍,
∴2(10﹣2t)=10﹣t或2(2t﹣10)=10﹣t
∴t=或t=6
∴经过秒或6秒,点Q到点B的距离是点P到点A的距离的2倍.
6.解:(1)∵﹣3+5=2,
∴B表示的数为2,A、B两点间的距离为2﹣(﹣3)=5,
故答案为:2,5;
(2)∵3﹣3+6=6,
∴B表示的数为6,A、B两点间的距离为6﹣3=3,
故答案为:6,3;
(3)根据题意,点B表示的数为x+p﹣n,A、B两点间的距离为|x+p﹣n﹣x|=|p﹣n|,
故答案为:x+p﹣n,|p﹣n|.
7.解:(1)点P运动至点C时,所需时间t=10÷2+10÷1+8÷2=19(秒),
(2)由题可知,P、Q两点相遇在线段OB上于M处,设OM=x.
则10÷2+x÷1=8÷1+(10﹣x)÷2,
解得x=.
故相遇点M所对应的数是.
(3)P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等有4种可能:
①动点Q在CB上,动点P在AO上,则:8﹣t=10﹣2t,解得:t=2.
②动点Q在CB上,动点P在OB上,则:8﹣t=(t﹣5)×1,解得:t=6.5.
③动点Q在BO上,动点P在OB上,则:2(t﹣8)=(t﹣5)×1,解得:t=11.
④动点Q在OA上,动点P在BC上,则:10+2(t﹣15)=t﹣13+10,解得:t=17.
综上所述:t的值为2、6.5、11或17.
8.解:(1)如图所示:
(2)CA=4﹣(﹣1)=4+1=5(cm);
设D表示的数为a,
∵AD=4,
∴|﹣1﹣a|=4,
解得:a=﹣5或3,
∴点D表示的数为﹣5或3;
故答案为:5,﹣5或3;
(3)将点A向右移动xcm,则移动后的点表示的数为﹣1+x;
故答案为:﹣1+x;
(4)CA﹣AB的值不会随着t的变化而变化,理由如下:
根据题意得:CA=(4+4t)﹣(﹣1+t)=5+3t,AB=(﹣1+t)﹣(﹣3﹣2t)=2+3t,
∴CA﹣AB=(5+3t)﹣(2+3t)=3,
∴CA﹣AB的值不会随着t的变化而变化.
角度的旋转
9.解:(1)∵∠COE是直角,∠COF=58°,
∴∠EOF=90°﹣58°=32°.
∵OF平分∠AOE,
∴∠AOE=2∠EOF=64°,
∴∠BOE=180°﹣64°=116°.
答:∠BOE的度数为116°;
(2)∵∠COF=m°,
∴∠EOF=m°﹣90°.
又∵OF平分∠AOE,
∴∠AOE=2∠EOF=2m°﹣180°,
∴∠BOE=180°﹣(2m°﹣180°)=360°﹣2m°.
答:∠BOE的度数为360°﹣2m°.
10.解:(1)∵∠AOC=90°,∠BOD=90°,∠BOC=60°,
∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,
∠DOC=∠BOD﹣∠BOC=90°﹣60°=30°;
(2)设∠COD=x°,则∠BOC=100°﹣x°,
∵∠AOC=110°,
∴∠AOB=110°﹣(100°﹣x°)=x°+10°,
∵∠AOD=∠BOC+70°,
∴100°+10°+x°=100°﹣x°+70°,
解得:x=30
即,∠COD=30°;
(3)当α=45°时,∠AOD与∠BOC互余;
理由是:
要使∠AOD与∠BOC互余,即∠AOD+∠BOC=90°,
∴∠AOB+∠BOC+∠COD+∠BOC=90°,
即∠AOC+∠BOD=90°,
∵∠AOC=∠BOD=α,
∴∠AOC=∠BOD=45°,
即α=45°,
∴当α=45°时,∠AOD与∠BOC互余.
11.解:(1)如图1所示:
∵ON平分∠AOC,
∴∠CON=,
又∵OM平分∠BOC,
∴∠COM=,
又∵∠AOB=∠AOC+∠BOC=90°,
∴∠MON=∠CON+∠COM
=
=
=45°;
(2)∠MON的大小不变,如图2所示,理由如下:
∵OM平分∠BOC,
∴∠MOC=,
又∵ON平分∠AOC,
∴∠AON=,
又∵∠MON=∠AON+∠AOM,
∴∠MON=
=
=
=45°.
12.解:(1)旋转前∠MOC=90°﹣∠AOC=60°,
当OM平分∠BOC时,,
3t=75°﹣60°,
t=5s,
结论:ON平分∠AOC,
理由:∵∠CON=90°﹣∠MOC,∠AOC=180°﹣∠BOC=2(90°﹣∠MOC),
∴∠AOC=2∠CON,
∴ON平分∠AOC
(2)∠MOC=∠AOM﹣∠AOC=(3t+90°)﹣(30°+6t)=60°﹣3t
若OC平分∠MON
则,
∴60°﹣3t=45°,
∴t=5.
13.解:如图所示:
(1)设∠AOD=5x°,
∵∠BOC=∠AOD
∴∠BOC=•5x°=3x°
又∵∠AOC=∠AOB+∠BOC,∠BOD=∠DOC+∠BOC,
∠AOD=∠AOB+∠BOC+∠DOC,
∴∠AOC+∠BOD=∠AOD+∠BOC,
又∵∠AOC=∠BOD=120°,
∴5x+3x=240
解得:x=30°
∴∠AOD=150°;
(2)∵∠AOD=150°,∠BOC=∠AOD,
∴∠BOC=90°,
①若线段OB、OC重合前相差20°,则有:
20t+15t+20=90,
解得:t=2,
②若线段OB、OC重合后相差20°,则有:
20t+15t﹣90=20
解得:,
又∵0<t<6,
∴t=2或t=;
(3)∠MON的度数不会发生改变,∠MON=30°,理由如下:
∵旋转t秒后,∠AOD=150°﹣5t°,∠AOC=120°﹣5t°,∠BOD=120°﹣5t°
∵OM、ON分别平分∠AOC、∠BOD
∴∠AOM=∠AOC=,
∠DON==
∴∠MON=∠AOD﹣∠AOM﹣∠DON
=150°﹣5t°﹣﹣
=30°.
14.解:(1)①∠AOC+∠BOD
=∠AOC+∠AOD+∠AOB
=∠COD+∠AOB
=60°+90°
=150°;
②∠BOC﹣∠AOD
=(∠AOB﹣∠AOC)﹣(∠COD﹣∠AOC)
=∠AOB﹣∠AOC﹣∠COD+∠AOC
=∠AOB﹣∠COD
=90°﹣60°
=30°;
故答案为:150°、30°;
(2)设运动时间为t秒,0<t≤36,∠MOC=(5t)°,
①0<t≤20时,OD与OA相遇前,∠AOD=(60+2t﹣5t)°=(60﹣3t)°,
∴∠MOC﹣∠AOD=(8t﹣60)°;
②20<t≤36时,OD与OA相遇后,∠AOD=[5t﹣(60+2t)]°=(3t﹣60)°,
∴∠MOC﹣∠AOD=(2t+60)°;
(3)设OC绕点O逆时针旋转n°,则OD也绕点O逆时针旋转n°,
①0<n°≤150°时,如图4,
射线OE、OF在射线OB同侧,在直线MN同侧,
∵∠BOF=[90°﹣(n﹣60°)]=(150﹣n)°,∠BOE=(90﹣n)°=(180﹣n)°,
∴∠EOF=∠BOE﹣∠BOF=15°;
②150°<n°≤180°时,如图5,
射线OE、OF在射线OB异侧,在直线MN同侧,
∵°,∠BOE=(90﹣n)°=(180﹣n)°,
∴∠EOF=∠BOE+∠BOF=15°;
③180°<n°≤330°时,如图6,
射线OE、OF在射线OB异侧,在直线MN异侧,
∵°,°,
∴∠EOF=∠DOF+∠COD+∠COE=165°;
④330°<n°≤360°时,如图7,
射线OE、OF在射线OB同侧,在直线MN异侧,
∵∠DOF=[360﹣(n﹣150)]°=(510﹣n)°,°,
∴∠EOF=∠DOF﹣∠COD﹣∠COE=15°;
综上,∠EOF=15°或165°.
15.解:(1)∵CF平分∠ACB,
∴∠BCF=∠ACF=∠ACB=×90°=45°,
∴∠ACE=∠ECF﹣∠ACF=90°﹣45°=45°;
(2)∠ACE=∠BCF,
∵∠BCF+∠ACF=90°=∠ACE+ACF,
∴∠ACE=∠BCF;
(3)∠BCF﹣∠ACD=45°,
∵∠ACF+∠BCF=90°,∠ACD+∠ACF=∠DCF=45°,
∴(∠ACF+∠BCF)﹣(∠ACD+∠ACF)=90°﹣45°,
即:∠BCF﹣∠ACD=45°.
16.解:(1)如图1①由方位角的表示方法得,射线OE的方向是北偏东20°,故答案为:北偏东20°;
②∵∠AOE+∠EON=∠CON+∠EON=90°,
∴∠AOE=∠CON;
故答案为:∠AOE=∠CON;
③∵∠AOE+∠EON=∠CON+∠BOC,
∴∠EON=∠BOC,
∵∠AOC+∠BOC=180°,
∴∠AOC+∠EON=180°,
故答案为:∠AOC+∠EON=180°,
(2)如图2,①∵∠COE=90°.
∴∠AOC+∠AOE=90°=∠AOE+∠EOM,
∴∠AOC=∠EOM,
∵OF恰好平分∠COM,
∴∠MOF=∠OCF,即:∠MOE+∠EOF=∠AOC+∠AOF,
∴∠EOF=∠AOF=24°
故答案为:24°
②∵∠CON+∠AOC=90°=∠AOC+∠AOE,
∴∠CON=∠AOE,
∵∠EOF=∠AOF=β,
∴∠CON=2∠AOF=2β;
故答案为:2β.
(3)如图3,由同角的余角相等可得∠COM=∠BOE,
∴∠CON=∠AOE,
∵OF平分∠COM,
∴∠COF=∠MOF,
∴∠CON=∠AOE=2∠COF+2∠AOC=2∠AOF,
∴∠CON=2∠AOF.
相关资料
更多