7.4.1抛物线及其标准方程 1课时 教案-2020届高三数学一轮复习
展开北师大珠海分校附属外国语学校教学设计文本
2019年12 月18日 执教:
课 题 | 抛物线及其标准方程 |
教学目标 | 1、掌握抛物线中的定义和标准方程及其推导过程,理解抛物线中的基本量; 2、能够熟练画出抛物线的草图,进一步提高学生“应用数学”的水平; |
教学重点 | 抛物线的标准方程 |
教学难点 | 抛物线标准方程的不同形式 |
教学方法 | 讲授,引导 |
教学时间 | 1课时 |
教学过程 | |
一、复习引入: 1、回顾椭圆和双曲线的定义 2、生活中抛物线的引例: 3、把一根直尺固定在图板上直线L位置,把一块三角板的一条直角边紧靠着真心直尺的边缘,再把一条细绳的一端固定在三角板的另一条直角边的一点A,取绳长等于点A到直角标顶点C的长(即点A到直线L的距离),并且把绳子的另一端固定在图板上的一点F 用铅笔尖扣着绳子,使点A到笔尖的一段绳子紧靠着三角板,然后将三角板沿着直尺上下滑动,笔尖就在图板上描出了一条曲线 二、讲解新课: 1、 抛物线定义: 平面内与一个定点和一条定直线的距离相等的点的轨迹叫做抛物线 定点叫做抛物线的焦点,定直线叫做抛物线的准线 注: (1)定点不在这条定直线; (1)定点在这条定直线,则点的轨迹是什么? 2、推导抛物线的标准方程: 如图所示,建立直角坐标系,设(), 那么焦点的坐标为,准线的方程为, 设抛物线上的点,则有 化简方程得 方程叫做抛物线的标准方程 (1)它表示的抛物线的焦点在轴的正半轴上,焦点坐标是, 它的准线方程是 (2)一条抛物线,由于它在坐标系的位置不同,方程也不同,有四种不同的情况,所以抛物线的标准方程还有其他几种形式:,,.这四种抛物线的图形、标准方程、焦点坐标以及准线方程如下 3、抛物线的准线方程:如图所示,分别建立直角坐标系,设出(),则抛物线的标准方程如下: (1), 焦点:,准线: (2), 焦点:,准线: (3), 焦点:,准线: (4) , 焦点:,准线: 相同点:(1)抛物线都过原点; (2)对称轴为坐标轴; (3)准线都与对称轴垂直,垂足与焦点在对称轴上关于原点对称; 它们到原点的距离都等于一次项系数绝对值的,即; 不同点:(1)图形关于轴对称时,为一次项,为二次项, 方程右端为、左端为; 图形关于轴对称时,为二次项,为一次项, 方程右端为,左端为 (2)开口方向在轴(或轴)正向时,焦点在轴(或轴)的正半轴上,方程右端取正号; 开口在轴(或轴)负向时,焦点在轴(或轴)负半轴时,方程右端取负号 三、讲解范例: 例1 (1)已知抛物线标准方程是,求它的焦点坐标和准线方程 (2)已知抛物线的焦点坐标是(0,-2),求它的标准方程 分析:(1)在标准方程下焦点坐标和准线方程都是用的代数式表示的,所以只要求出即可; (2)求的是标准方程,因此所指抛物线应过原点,结合焦点坐标求出,问题易解。 解析:(1),焦点坐标是(,0)准线方程是. (2)焦点在轴负半轴上,=2, 所以所求抛物线的标准议程是. 例2 求满足下列条件的抛物线的标准方程: (1)焦点坐标是F(-5,0) (2)经过点A(2,-3) 分析:抛物线的标准方程中只有一个参数p,因此,只要确定了抛物线属于哪类标准形式,再求出p值就可以写出其方程,但要注意两解的情况 解:(1)焦点在x轴负半轴上,=5, 所以所求抛物线的标准议程是. (2)经过点A(2,-3)的抛物线可能有两种标准形式:y2=2px或x2=-2py. 点A(2,-3)坐标代入,即9=4p,得2p= 点A(2,-3)坐标代入x2=-2py,即4=6p,得2p= ∴所求抛物线的标准方程是或x2=-y 例2 已知抛物线的标准方程是(1),(2), 求它的焦点坐标和准线方程. 分析:这是关于抛物线标准方程的基本例题,关键是(1)根据示意图确定属于哪类标准形式,(2)求出参数的值. 解:(1),焦点坐标是(3,0)准线方程 (2)先化为标准方程,,焦点坐标是(0,), 准线方程是. 四、课堂练习: 1.求下列抛物线的焦点坐标和准线方程 (1)y2=8x (2)x2=4y (3)2y2+3x=0 (4) 2.根据下列条件写出抛物线的标准方程 (1)焦点是F(-2,0) (2)准线方程是 (3)焦点到准线的距离是4,焦点在y轴上 (4)经过点A(6,-2) 3.抛物线x2=4y上的点p到焦点的距离是10,求p点坐标 点评:练习时注意(1)由焦点位置或准线方程正确判断抛物线标准方程的类型;(2)p表示焦点到准线的距离故p>0; (3)根据图形判断解有几种可能 五、小结 :小结抛物线的定义、焦点、准线及其方程的概念; 六、课后作业:册p58 预习导学
| |
板书设计: 抛物线的标准方程 一、复习 二、讲授新课 三、课堂练习 四、小结 |