2020版新一线高考文科数学(北师大版)一轮复习教学案:第2章第13节 导数与函数的综合问题
展开第十三节 导数与函数的综合问题
导数与不等式 |
►考法1 证明不等式
【例1】 已知函数f(x)=x+aex(a∈R).
(1)讨论函数f(x)的单调性;
(2)当x<0,a≤1时,证明:x2+(a+1)x>xf′(x).
[解] (1)由f(x)=x+aex可得f′(x)=1+aex.
当a≥0时,f′(x)>0,则函数f(x)在(-∞,+∞)上为增函数.
当a<0时,由f′(x)>0可得x<ln,
由f′(x)<0可得x>ln,
所以函数f(x)在上为增函数,在上为减函数.
(2)证明:设F(x)=x2+(a+1)x-xf′(x)=x2+ax-axex=x(x+a-aex).
设H(x)=x+a-aex,则H′(x)=1-aex.
∵x<0,∴0<ex<1,又a≤1,∴1-aex≥1-ex>0.
∴H(x)在(-∞,0)上为增函数,则H(x)<H(0)=0,即x+a-aex<0.
由x<0可得F(x)=x(x+a-aex)>0,所以x2+(a+1)x>xf′(x).
►考法2 解决不等式恒成立(存在性)问题
【例2】 设f(x)=+xln x,g(x)=x3-x2-3.
(1)如果存在x1,x2∈[0,2]使得g(x1)-g(x2)≥M成立,求满足上述条件的最大整数M;
(2)如果对于任意的s,t∈,都有f(s)≥g(t)成立,求实数a的取值范围.
[解] (1)存在x1,x2∈[0,2]使得g(x1)-g(x2)≥M成立,等价于[g(x1)-g(x2)]max≥M.
由g(x)=x3-x2-3,得g′(x)=3x2-2x=3x.
令g′(x)>0得x<0,或x>,
令g′(x)<0得0<x<,又x∈[0,2],
所以g(x)在区间上是减少的,在区间上是增加的,
所以g(x)min=g=-,
又g(0)=-3,g(2)=1,所以g(x)max=g(2)=1.
故[g(x1)-g(x2)]max=g(x)max-g(x)min=≥M,
则满足条件的最大整数M=4.
(2)对于任意的s,t∈,都有f(s)≥g(t)成立,等价于在区间上,函数f(x)min≥g(x)max,
由(1)可知在区间上,g(x)的最大值为g(2)=1.
在区间上,f(x)=+xln x≥1恒成立等价于a≥x-x2ln x恒成立.
设h(x)=x-x2ln x,
h′(x)=1-2xln x-x,
令m(x)=xln x,由m′(x)=ln x+1>0
得x>.
即m(x)=xln x在上是增函数,
可知h′(x)在区间上是减函数,
又h′(1)=0,
所以当1<x<2时,h′(x)<0;
当<x<1时,h′(x)>0.
即函数h(x)=x-x2ln x在区间上递增,在区间(1,2)上递减,
所以h(x)max=h(1)=1,
所以a≥1,
即实数a的取值范围是[1,+∞).
[规律方法] 1.利用导数证明含“x”不等式方法,证明:f(x)>g(x).
法一:移项,f(x)-g(x)>0,构造函数F(x)=f(x)-g(x),转化证明F(x)min>0,利用导数研究F(x)单调性,用上定义域的端点值.
法二:转化证明:f(x)min>g(x)max.
法三:先对所求证不等式进行变形,分组或整合,再用法一或法二.
2.利用导数解决不等式的恒成立问题的策略
(1)首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围.
(2)也可分离变量,构造函数,直接把问题转化为函数的最值问题.
3.“恒成立”与“存在性”问题的求解是“互补”关系,即f(x)≥g(a)对于x∈D恒成立,应求f(x)的最小值;若存在x∈D,使得f(x)≥g(a)成立,应求f(x)的最大值.应特别关注等号是否成立问题.
(2018·全国卷Ⅰ节选)已知函数f(x)=aex-ln x-1.证明:当a≥时,f(x)≥0.
[解] 证明:当a≥时,f(x)≥-ln x-1.
设g(x)=-ln x-1,则g′(x)=-.
当0<x<1时,g′(x)<0;当x>1时,g′(x)>0.所以x=1是g(x)的最小值点.
故当x>0时,g(x)≥g(1)=0.
因此,当a≥时,f(x)≥0.
利用导数研究函数的零点问题 |
【例3】 (2019·黄山模拟)设函数f(x)=x3+ax2+bx+c.
(1)求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)设a=b=4,若函数f(x)有三个不同零点,求c的取值范围.
[解] (1)由f(x)=x3+ax2+bx+c,得f′(x)=3x2+2ax+b.因为f(0)=c,f′(0)=b,
所以曲线y=f(x)在点(0,f(0))处的切线方程为y=bx+c.
(2)当a=b=4时,f(x)=x3+4x2+4x+c,
所以f′(x)=3x2+8x+4.
令f′(x)=0,得3x2+8x+4=0,解得x=-2或x=-.
当x变化时,f(x)与f′(x)的变化情况如下:
x | (-∞,-2) | -2 | - | ||
f′(x) | + | 0 | - | 0 | + |
f(x) | ↘ | c | ↗ | c- | ↘ |
所以,当c>0且c-<0,存在x1∈(-4,-2),x2∈,x3∈,使得f(x1)=f(x2)=f(x3)=0.
由f(x)的单调性知,当且仅当c∈时,函数f(x)=x3+4x2+4x+c有三个不同零点.
[规律方法] 利用导数研究方程根的方法
(1)研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等.
(2)根据题目要求,画出函数图像的走势规律,标明函数极(最)值的位置.
(3)可以通过数形结合的思想去分析问题,使问题的求解有一个清晰、直观的整体展现.
设函数f(x)=-kln x,k>0.
(1)求f(x)的单调区间和极值;
(2)证明:若f(x)存在零点,则f(x)在区间(1,]上仅有一个零点.
[解] (1)由f(x)=-kln x(k>0),得x>0且f′(x)=x-=.由f′(x)=0,解得x=(负值舍去).
f(x)与f′(x)在区间(0,+∞)上的变化情况如下表:
x | (0,) | (,+∞) | |
f′(x) | - | 0 | + |
f(x) | ↗ | ↘ |
所以,f(x)的递减区间是(0,),递增区间是(,+∞),f(x)在x=处取得极小值f()=,无极大值.
(2)证明:由(1)知,f(x)在区间(0,+∞)上的最小值为f()=.
因为f(x)存在零点,所以≤0,从而k≥e,
当k=e时,f(x)在区间(1,)上递减,且f()=0,
所以x=是f(x)在区间(1,]上的唯一零点.
当k>e时,f(x)在区间(1,)上递减,且f(1)=>0,f()=<0,
所以f(x)在区间(1,]上仅有一个零点.
综上可知,若f(x)存在零点,则f(x)在区间(1,]上仅有一个零点.
利用导数研究生活中的优化问题 |
【例4】 某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路.记两条相互垂直的公路分别为l1,l2,山区边界曲线为C,计划修建的公路为l.如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米.以l2,l1所在的直线分别为x轴,y轴,建立平面直角坐标系xOy.假设曲线C符合函数y=(其中a,b为常数)模型.
(1)求a,b的值;
(2)设公路l与曲线C相切于点P,P的横坐标为t.
①请写出公路l长度的函数解析式f(t),并写出其定义域;
②当t为何值时,公路l的长度最短?求出最短长度.
[解] (1)由题意知,点M,N的坐标分别为(5,40),(20,2.5).
将其分别代入y=,
得
解得
(2)①由(1)知,y=(5≤x≤20),
则点P的坐标为,
设公路l交x轴,y轴分别为A,B两点,如图所示,
又y′=-,
则直线l的方程为y-=-(x-t),
由此得A,B.
故f(t)=
=,t∈[5,20].
②设g(t)=t2+,t∈[5,20],
则g′(t)=2t-.
令g′(t)=0,解得t=10.
当t∈[5,10)时,g′(t)<0,g(t)是减函数;
当t∈(10,20]时,g′(t)>0,g(t)是增函数.
所以当t=10时,函数g(t)有极小值,也是最小值,
所以g(t)min=300,
此时f(t)min=15.
故当t=10时,公路l的长度最短,最短长度为15千米.
[规律方法] 利用导数解决生活中的实际应用问题的4步骤
某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为1 60元/平方米,该蓄水池的总建造成本为12 000π元(π为圆周率).
(1)将V表示成r的函数V(r),并求该函数的定义域;
(2)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大.
[解] (1)因为蓄水池侧面的总成本为100×2πrh=200πrh元,底面的总成本为160πr2元,所以蓄水池的总成本为(200πrh+160πr2)元.
又根据题意知200πrh+160πr2=12 000π,
所以h=(300-4r2),
从而V(r)=πr2h=(300r-4r3).
因为r>0,又由h>0可得r<5,
故函数V(r)的定义域为(0,5).
(2)因为V(r)=(300r-4r3),
所以V′(r)=(300-12r2),
令V′(r)=0,解得r1=5,r2=-5(舍去).
当r∈(0,5)时,V′(r)>0,故V(r)在(0,5)上为增函数;
当r∈(5,5)时,V′(r)<0,故V(r)在(5,5)上为减函数.
由此可知,V(r)在r=5处取得最大值,此时h=8.即当r=5,h=8时,该蓄水池的体积最大.
1.(2018·全国卷Ⅲ)已知函数f(x)=.
(1)求曲线y=f(x)在点(0,-1)处的切线方程;
(2)证明:当a≥1时,f(x)+e≥0.
[解] (1)f′(x)=,f′(0)=2.
因此曲线y=f(x)在(0,-1)处的切线方程是2x-y-1=0.
(2)当a≥1时,f(x)+e≥(x2+x-1+ex+1)e-x.
令g(x)=x2+x-1+ex+1,则g′(x)=2x+1+ex+1.
当x<-1时,g′(x)<0,g(x)递减;当x>-1时,g′(x)>0,g(x)递增.所以g(x)≥g(-1)=0.
因此f(x)+e≥0.
2.(2015·全国卷Ⅰ)设函数f(x)=e2x-aln x.
(1)讨论f(x)的导函数f′(x)零点的个数;
(2)证明:当a>0时,f(x)≥2a+aln.
[解] (1)f(x)的定义域为(0,+∞),f′(x)=2e2x-(x>0).
当a≤0时,f′(x)>0,f′(x)没有零点;
当a>0时,设u(x)=e2x,v(x)=-,
因为u(x)=e2x在(0,+∞)上是增加的,v(x)=-在(0,+∞)上是增加的,
所以f′(x)在(0,+∞)上是增加的.
又f′(a)>0,当b满足0<b<且b<时,f′(b)<0,
故当a>0时,f′(x)存在唯一零点.
(2)证明:由(1),可设f′(x)在(0,+∞)上的唯一零点为x0,当x∈(0,x0)时,f′(x)<0;
当x∈(x0,+∞)时,f′(x)>0.
故f(x)在(0,x0)上是减少的,在(x0,+∞)上是增加的,所以当x=x0时,f(x)取得最小值,最小值为f(x0).
由于2e2x0-=0,
所以f(x0)=+2ax0+aln≥2a+aln .
故当a>0时,f(x)≥2a+aln .