还剩11页未读,
继续阅读
2019版高考数学(理)创新大一轮人教A全国通用版讲义:第九章平面解析几何第3节
展开
第3节 圆的方程
最新考纲 掌握确定圆的几何要素,掌握圆的标准方程与一般方程.
知 识 梳 理
1.圆的定义和圆的方程
定义
平面内到定点的距离等于定长的点的轨迹叫做圆
方
程
标准
(x-a)2+(y-b)2=r2(r>0)
圆心C(a,b)
半径为r
一般
x2+y2+Dx+Ey+F=0
(D2+E2-4F>0)
充要条件:D2+E2-4F>0
圆心坐标:
半径r=
2.点与圆的位置关系
平面上的一点M(x0,y0)与圆C:(x-a)2+(y-b)2=r2之间存在着下列关系:
(1)d>r⇔M在圆外,即(x0-a)2+(y0-b)2>r2⇔M在圆外;
(2)d=r⇔M在圆上,即(x0-a)2+(y0-b)2=r2⇔M在圆上;
(3)d<r⇔M在圆内,即(x0-a)2+(y0-b)2<r2⇔M在圆内.
[常用结论与微点提醒]
1.圆心在坐标原点半径为r的圆的方程为x2+y2=r2.
2.以A(x1,y1),B(x2,y2)为直径端点的圆的方程为(x-x1)·(x-x2)+(y-y1)(y-y2)=0.
3.求轨迹方程和求轨迹是有区别的,求轨迹方程得出方程即可,而求轨迹在得出方程后还要指明轨迹表示什么曲线.
诊 断 自 测
1.思考辨析(在括号内打“√”或“×”)
(1)确定圆的几何要素是圆心与半径.( )
(2)方程x2+y2=a2表示半径为a的圆.( )
(3)方程x2+y2+4mx-2y+5m=0表示圆.( )
(4)方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是A=C≠0,B=0,D2+E2-4AF>0.( )
解析 (2)当a=0时,x2+y2=a2表示点(0,0);当a<0时,表示半径为|a|的圆.
(3)当(4m)2+(-2)2-4×5m>0,即m<或m>1时表示圆.
答案 (1)√ (2)× (3)× (4)√
2.若点(1,1)在圆(x-a)2+(y+a)2=4的内部,则实数a的取值范围是( )
A.(-1,1) B.(0,1)
C.(-∞,-1)∪(1,+∞) D.a=±1
解析 因为点(1,1)在圆的内部,
所以(1-a)2+(1+a)2<4,所以-1 答案 A
3.(2018·长春质检)圆(x-2)2+y2=4关于直线y=x对称的圆的方程是( )
A.(x-)2+(y-1)2=4
B.(x-)2+(y-)2=4
C.x2+(y-2)2=4
D.(x-1)2+(y-)2=4
解析 圆(x-2)2+y2=4的圆心(2,0)关于直线y=x对称的坐标为(1,),从而所求圆的方程为(x-1)2+(y-)2=4.
答案 D
4.(2016·浙江卷)已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是________,半径是________.
解析 由已知方程表示圆,则a2=a+2,
解得a=2或a=-1.
当a=2时,方程不满足表示圆的条件,故舍去.
当a=-1时,原方程为x2+y2+4x+8y-5=0,
化为标准方程为(x+2)2+(y+4)2=25,
表示以(-2,-4)为圆心,半径为5的圆.
答案 (-2,-4) 5
5.(必修2P124A4改编)圆C的圆心在x轴上,并且过点A(-1,1)和B(1,3),则圆C的方程为________.
解析 设圆心坐标为C(a,0),
∵点A(-1,1)和B(1,3)在圆C上,
∴|CA|=|CB|,即=,
解得a=2,所以圆心为C(2,0),
半径|CA|==,
∴圆C的方程为(x-2)2+y2=10.
答案 (x-2)2+y2=10
考点一 圆的方程
【例1】 (1)(一题多解)过点A(4,1)的圆C与直线x-y-1=0相切于点B(2,1),则圆C的方程为________.
(2)已知圆C经过P(-2,4),Q(3,-1)两点,且在x轴上截得的弦长等于6,则圆C的方程为________.
解析 (1)法一 由已知kAB=0,所以AB的中垂线方程为x=3.①
过B点且垂直于直线x-y-1=0的直线方程为y-1=-(x-2),即x+y-3=0,②
联立①②,解得所以圆心坐标为(3,0),半径r==,
所以圆C的方程为(x-3)2+y2=2.
法二 设圆的方程为(x-a)2+(y-b)2=r2(r>0),
∵点A(4,1),B(2,1)在圆上,故
又∵=-1,解得a=3,b=0,r=,
故所求圆的方程为(x-3)2+y2=2.
(2)设圆的方程为x2+y2+Dx+Ey+F=0(D2+E2-4F>0),
将P,Q两点的坐标分别代入得
又令y=0,得x2+Dx+F=0.③
设x1,x2是方程③的两根,
由|x1-x2|=6,得D2-4F=36,④
联立①②④,解得D=-2,E=-4,F=-8,或D=-6,E=-8,F=0.
故所求圆的方程为
x2+y2-2x-4y-8=0或x2+y2-6x-8y=0.
答案 (1)(x-3)2+y2=2 (2)x2+y2-2x-4y-8=0或x2+y2-6x-8y=0
规律方法 求圆的方程时,应根据条件选用合适的圆的方程.一般来说,求圆的方程有两种方法:
(1)几何法,通过研究圆的性质进而求出圆的基本量.确定圆的方程时,常用到的圆的三个性质:①圆心在过切点且垂直切线的直线上;②圆心在任一弦的中垂线上;③两圆内切或外切时,切点与两圆圆心三点共线;
(2)代数法,即设出圆的方程,用待定系数法求解.
【训练1】 (1)(2018·兰州诊断)半径为2的圆C的圆心在第四象限,且与直线x=0和x+y=2均相切,则该圆的标准方程为( )
A.(x-1)2+(y+2)2=4 B.(x-2)2+(y+2)2=2
C.(x-2)2+(y+2)2=4 D.(x-2)2(y+2)2=4
(2)(2015·全国Ⅰ卷)一个圆经过椭圆+=1的三个顶点,且圆心在x轴的正半轴上,则该圆的标准方程为________.
解析 (1)设圆心坐标为(2,-a)(a>0),则圆心到直线x+y=2的距离d==2,∴a=2,∴该圆的标准方程为(x-2)2+(y+2)2=4.
(2)由题意知圆过(4,0),(0,2),(0,-2)三点,(4,0),(0,-2)两点的垂直平分线方程为
y+1=-2(x-2),
令y=0,解得x=,圆心为,半径为.
∴圆的标准方程为+y2=.
答案 (1)C (2)+y2=
考点二 与圆有关的最值问题
【例2】 已知实数x,y满足方程x2+y2-4x+1=0.
(1)求的最大值和最小值;
(2)求y-x的最大值和最小值;
(3)求x2+y2的最大值和最小值.
解 原方程可化为(x-2)2+y2=3,表示以(2,0)为圆心,为半径的圆.
(1)的几何意义是圆上一点与原点连线的斜率,
所以设=k,即y=kx.
当直线y=kx与圆相切时,斜率k取最大值或最小值,此时=,解得k=±(如图1).
所以的最大值为,最小值为-.
(2)y-x可看作是直线y=x+b在y轴上的截距,当直线y=x+b与圆相切时,纵截距b取得最大值或最小值,此时=,解得b=-2±(如图2).
所以y-x的最大值为-2+,最小值为-2-.
(3)x2+y2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点和圆心连线与圆的两个交点处取得最大值和最小值(如图3).
又圆心到原点的距离为=2,
所以x2+y2的最大值是(2+)2=7+4,x2+y2的最小值是(2-)2=7-4.
规律方法 把有关式子进行转化或利用所给式子的几何意义解题,充分体现了数形结合以及转化的数学思想,其中以下几类转化极为常见:
(1)形如m=的最值问题,可转化为动直线斜率的最值问题;
(2)形如t=ax+by的最值问题,可转化为动直线截距的最值问题;
(3)形如m=(x-a)2+(y-b)2的最值问题,可转化为两点间距离的平方的最值问题.
【训练2】 设点P是函数y=-图象上的任意一点,点Q坐标为(2a,a-3)(a∈R),则|PQ|的最小值为________.
解析 函数y=-的图象表示圆(x-1)2+y2=4在x轴及下方的部分,令点Q的坐标为(x,y),则得y=-3,即x-2y-6=0,作出图象如图所示,
由于圆心(1,0)到直线x-2y-6=0的距离d==>2,所以直线x-2y-6=0与圆(x-1)2+y2=4相离,因此|PQ|的最小值是-2.
答案 -2
考点三 与圆有关的轨迹问题
【例3】 设定点M(-3,4),动点N在圆x2+y2=4上运动,以OM,ON为邻边作平行四边形MONP,求点P的轨迹.
解 如图所示,设P(x,y),N(x0,y0),则线段OP的中点坐标为,线段MN的中点坐标为.由于平行四边形的对角线互相平分,
故=,=.从而
又N(x+3,y-4)在圆上,
故(x+3)2+(y-4)2=4.
因此所求轨迹为圆:(x+3)2+(y-4)2=4,但应除去两点和(点P在直线OM上时的情况).
规律方法 求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法:
(1)直接法,直接根据题目提供的条件列出方程;
(2)定义法,根据圆、直线等定义列方程;
(3)几何法,利用圆的几何性质列方程;
(4)代入法,找到要求点与已知点的关系,代入已知点满足的关系式等.
【训练3】 (2018·郑州模拟)已知线段AB的端点B在圆C1:x2+(y-4)2=16上运动,端点A的坐标为(4,0),线段AB的中点为M.
(1)试求M点的轨迹C2的方程;
(2)若圆C1与曲线C2交于C,D两点,试求线段CD的长.
解 (1)设M(x,y),B(x′,y′),
则由题意可得解得
∵点B在圆C1:x2+(y-4)2=16上,
∴(2x-4)2+(2y-4)2=16,即(x-2)2+(y-2)2=4.
∴M点的轨迹C2的方程为(x-2)2+(y-2)2=4.
(2)由方程组得直线CD的方程为x-y-1=0,
圆C1的圆心C1(0,4)到直线CD的距离d==,
又圆C1的半径为4,
∴线段CD的长为2=.
基础巩固题组
(建议用时:40分钟)
一、选择题
1.已知点A(1,-1),B(-1,1),则以线段AB为直径的圆的方程是( )
A.x2+y2=2 B.x2+y2=
C.x2+y2=1 D.x2+y2=4
解析 AB的中点坐标为(0,0),
|AB|==2,
∴圆的方程为x2+y2=2.
答案 A
2.方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则实数a的取值范围是( )
A.(-∞,-2)∪ B.
C.(-2,0) D.
解析 方程为+(y+a)2=1-a-表示圆,则1-a->0,解得-2<a<.
答案 D
3.(2018·厦门质检)圆C与x轴相切于T(1,0),与y轴正半轴交于两点A,B,且|AB|=2,则圆C的标准方程为( )
A.(x-1)2+(y-)2=2 B.(x-1)2+(y-2)2=2
C.(x+1)2+(y+)2=4 D.(x-1)2+(y-)2=4
解析 由题意得,圆C的半径为=,圆心坐标为(1,),∴圆C的标准方程为(x-1)2+(y-)2=2.
答案 A
4.点P(4,-2)与圆x2+y2=4上任一点连线的中点的轨迹方程是( )
A.(x-2)2+(y+1)2=1 B.(x-2)2+(y+1)2=4
C.(x+4)2+(y-2)2=4 D.(x+2)2+(y-1)2=1
解析 设圆上任一点为Q(x0,y0),PQ的中点为M(x,y),则解得因为点Q在圆x2+y2=4上,所以x+y=4,即(2x-4)2+(2y+2)2=4,
化简得(x-2)2+(y+1)2=1.
答案 A
5.(2015·全国Ⅱ卷)已知三点A(1,0),B(0,),C(2,),则△ABC外接圆的圆心到原点的距离为( )
A. B. C. D.
解析 由点B(0,),C(2,),得线段BC的垂直平分线方程为x=1,①
由点A(1,0),B(0,),得线段AB的垂直平分线方程为
y-=,②
联立①②,解得△ABC外接圆的圆心坐标为,
其到原点的距离为 =.
答案 B
二、填空题
6.(2018·长沙模拟)以抛物线y2=4x的焦点为圆心,与该抛物线的准线相切的圆的标准方程为________.
解析 抛物线y2=4x的焦点为(1,0),准线为x=-1,故所求圆的圆心为(1,0),半径为2,所以该圆的标准方程为(x-1)2+y2=4.
答案 (x-1)2+y2=4
7.(2018·宜昌模拟)已知圆C:x2+y2+kx+2y=-k2,当圆C的面积取最大值时,圆心C的坐标为________.
解析 圆C的方程可化为+(y+1)2=-k2+1.所以,当k=0时圆C的面积最大.
答案 (0,-1)
8.已知点M(1,0)是圆C:x2+y2-4x-2y=0内的一点,那么过点M的最短弦所在直线的方程是________.
解析 过点M的最短弦与CM垂直,圆C:x2+y2-4x-2y=0的圆心为C(2,1),∵kCM==1,∴最短弦所在直线的方程为y-0=-(x-1),即x+y-1=0.
答案 x+y-1=0
三、解答题
9.一圆经过A(4,2),B(-1,3)两点,且在两坐标轴上的四个截距的和为2,求此圆的方程.
解 设所求圆的方程为x2+y2+Dx+Ey+F=0(D2+E2-4F>0).
令y=0,得x2+Dx+F=0,所以x1+x2=-D.
令x=0,得y2+Ey+F=0,所以y1+y2=-E.
由题意知-D-E=2,即D+E+2=0.①
又因为圆过点A,B,所以16+4+4D+2E+F=0.②
1+9-D+3E+F=0.③
解①②③组成的方程组得D=-2,E=0,F=-12.
故所求圆的方程为x2+y2-2x-12=0.
10.已知点P(2,2),圆C:x2+y2-8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.
(1)求M的轨迹方程;
(2)当|OP|=|OM|时,求l的方程及△POM的面积.
解 (1)圆C的方程可化为x2+(y-4)2=16,所以圆心为C(0,4),半径为4.
设M(x,y),则=(x,y-4),=(2-x,2-y).
由题设知·=0,故x(2-x)+(y-4)(2-y)=0,
即(x-1)2+(y-3)2=2.
由于点P在圆C的内部,所以M的轨迹方程是(x-1)2+(y-3)2=2.
(2)由(1)可知M的轨迹是以点N(1,3)为圆心,为半径的圆.由于|OP|=|OM|,故O在线段PM的垂直平分线上,又P在圆N上,从而ON⊥PM.
因为ON的斜率为3,所以l的斜率为-,
故l的方程为x+3y-8=0.
又|OM|=|OP|=2,O到l的距离为,
所以|PM|=,S△POM=××=,
故△POM的面积为.
能力提升题组
(建议用时:20分钟)
11.若直线ax+2by-2=0(a>0,b>0)始终平分圆x2+y2-4x-2y-8=0的周长,则+的最小值为( )
A.1 B.5 C.4 D.3+2
解析 由题意知圆心C(2,1)在直线ax+2by-2=0上,
∴2a+2b-2=0,整理得a+b=1,
∴+=(a+b)=3++
≥3+2 =3+2,
当且仅当=,即b=2-,a=-1时,等号成立.
∴+的最小值为3+2.
答案 D
12.(2018·东北三省四校联考)已知圆C:(x-3)2+(y-4)2=1,设点P是圆C上的动点.记d=|PB|2+|PA|2,其中A(0,1),B(0,-1),则d的最大值为________.
解析 设P(x0,y0),d=|PB|2+|PA|2=x+(y0+1)2+x+(y0-1)2=2(x+y)+2.x+y为圆上任一点到原点距离的平方,∴(x+y)max=(5+1)2=36,∴dmax=74.
答案 74
13.(2017·全国Ⅲ卷)已知抛物线C:y2=2x,过点(2,0)的直线l交C于A,B两点,圆M是以线段AB为直径的圆.
(1)证明:坐标原点O在圆M上;
(2)设圆M过点P(4,-2),求直线l与圆M的方程.
(1)证明 设l:x=my+2,A(x1,y1),B(x2,y2),
联立消去x得y2-2my-4=0,
Δ=4m2+16恒大于0,y1+y2=2m,y1y2=-4.
·=x1x2+y1y2=(my1+2)(my2+2)+y1y2
=(m2+1)y1y2+2m(y1+y2)+4=-4(m2+1)+2m·2m+4=0.
所以⊥,即O在圆M上.
(2)解 由(1)可得x1+x2=m(y1+y2)+4=2m2+4.
故圆心M的坐标为(m2+2,m),圆M的半径r=.
由于圆M过点P(4,-2),因此·=0,
故(x1-4)(x2-4)+(y1+2)(y2+2)=0,
即x1x2-4(x1+x2)+y1y2+2(y1+y2)+20=0.
由(1)可得y1y2=-4,x1x2=4.
所以2m2-m-1=0,解得m=1或m=-.
当m=1时,直线l的方程为x-y-2=0,圆心M的坐标为(3,1),圆M的半径为,
圆M的方程为(x-3)2+(y-1)2=10.
当m=-时,直线l的方程为2x+y-4=0,圆心M的坐标为,圆M的半径为,
圆M的方程为+=.
最新考纲 掌握确定圆的几何要素,掌握圆的标准方程与一般方程.
知 识 梳 理
1.圆的定义和圆的方程
定义
平面内到定点的距离等于定长的点的轨迹叫做圆
方
程
标准
(x-a)2+(y-b)2=r2(r>0)
圆心C(a,b)
半径为r
一般
x2+y2+Dx+Ey+F=0
(D2+E2-4F>0)
充要条件:D2+E2-4F>0
圆心坐标:
半径r=
2.点与圆的位置关系
平面上的一点M(x0,y0)与圆C:(x-a)2+(y-b)2=r2之间存在着下列关系:
(1)d>r⇔M在圆外,即(x0-a)2+(y0-b)2>r2⇔M在圆外;
(2)d=r⇔M在圆上,即(x0-a)2+(y0-b)2=r2⇔M在圆上;
(3)d<r⇔M在圆内,即(x0-a)2+(y0-b)2<r2⇔M在圆内.
[常用结论与微点提醒]
1.圆心在坐标原点半径为r的圆的方程为x2+y2=r2.
2.以A(x1,y1),B(x2,y2)为直径端点的圆的方程为(x-x1)·(x-x2)+(y-y1)(y-y2)=0.
3.求轨迹方程和求轨迹是有区别的,求轨迹方程得出方程即可,而求轨迹在得出方程后还要指明轨迹表示什么曲线.
诊 断 自 测
1.思考辨析(在括号内打“√”或“×”)
(1)确定圆的几何要素是圆心与半径.( )
(2)方程x2+y2=a2表示半径为a的圆.( )
(3)方程x2+y2+4mx-2y+5m=0表示圆.( )
(4)方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是A=C≠0,B=0,D2+E2-4AF>0.( )
解析 (2)当a=0时,x2+y2=a2表示点(0,0);当a<0时,表示半径为|a|的圆.
(3)当(4m)2+(-2)2-4×5m>0,即m<或m>1时表示圆.
答案 (1)√ (2)× (3)× (4)√
2.若点(1,1)在圆(x-a)2+(y+a)2=4的内部,则实数a的取值范围是( )
A.(-1,1) B.(0,1)
C.(-∞,-1)∪(1,+∞) D.a=±1
解析 因为点(1,1)在圆的内部,
所以(1-a)2+(1+a)2<4,所以-1 答案 A
3.(2018·长春质检)圆(x-2)2+y2=4关于直线y=x对称的圆的方程是( )
A.(x-)2+(y-1)2=4
B.(x-)2+(y-)2=4
C.x2+(y-2)2=4
D.(x-1)2+(y-)2=4
解析 圆(x-2)2+y2=4的圆心(2,0)关于直线y=x对称的坐标为(1,),从而所求圆的方程为(x-1)2+(y-)2=4.
答案 D
4.(2016·浙江卷)已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是________,半径是________.
解析 由已知方程表示圆,则a2=a+2,
解得a=2或a=-1.
当a=2时,方程不满足表示圆的条件,故舍去.
当a=-1时,原方程为x2+y2+4x+8y-5=0,
化为标准方程为(x+2)2+(y+4)2=25,
表示以(-2,-4)为圆心,半径为5的圆.
答案 (-2,-4) 5
5.(必修2P124A4改编)圆C的圆心在x轴上,并且过点A(-1,1)和B(1,3),则圆C的方程为________.
解析 设圆心坐标为C(a,0),
∵点A(-1,1)和B(1,3)在圆C上,
∴|CA|=|CB|,即=,
解得a=2,所以圆心为C(2,0),
半径|CA|==,
∴圆C的方程为(x-2)2+y2=10.
答案 (x-2)2+y2=10
考点一 圆的方程
【例1】 (1)(一题多解)过点A(4,1)的圆C与直线x-y-1=0相切于点B(2,1),则圆C的方程为________.
(2)已知圆C经过P(-2,4),Q(3,-1)两点,且在x轴上截得的弦长等于6,则圆C的方程为________.
解析 (1)法一 由已知kAB=0,所以AB的中垂线方程为x=3.①
过B点且垂直于直线x-y-1=0的直线方程为y-1=-(x-2),即x+y-3=0,②
联立①②,解得所以圆心坐标为(3,0),半径r==,
所以圆C的方程为(x-3)2+y2=2.
法二 设圆的方程为(x-a)2+(y-b)2=r2(r>0),
∵点A(4,1),B(2,1)在圆上,故
又∵=-1,解得a=3,b=0,r=,
故所求圆的方程为(x-3)2+y2=2.
(2)设圆的方程为x2+y2+Dx+Ey+F=0(D2+E2-4F>0),
将P,Q两点的坐标分别代入得
又令y=0,得x2+Dx+F=0.③
设x1,x2是方程③的两根,
由|x1-x2|=6,得D2-4F=36,④
联立①②④,解得D=-2,E=-4,F=-8,或D=-6,E=-8,F=0.
故所求圆的方程为
x2+y2-2x-4y-8=0或x2+y2-6x-8y=0.
答案 (1)(x-3)2+y2=2 (2)x2+y2-2x-4y-8=0或x2+y2-6x-8y=0
规律方法 求圆的方程时,应根据条件选用合适的圆的方程.一般来说,求圆的方程有两种方法:
(1)几何法,通过研究圆的性质进而求出圆的基本量.确定圆的方程时,常用到的圆的三个性质:①圆心在过切点且垂直切线的直线上;②圆心在任一弦的中垂线上;③两圆内切或外切时,切点与两圆圆心三点共线;
(2)代数法,即设出圆的方程,用待定系数法求解.
【训练1】 (1)(2018·兰州诊断)半径为2的圆C的圆心在第四象限,且与直线x=0和x+y=2均相切,则该圆的标准方程为( )
A.(x-1)2+(y+2)2=4 B.(x-2)2+(y+2)2=2
C.(x-2)2+(y+2)2=4 D.(x-2)2(y+2)2=4
(2)(2015·全国Ⅰ卷)一个圆经过椭圆+=1的三个顶点,且圆心在x轴的正半轴上,则该圆的标准方程为________.
解析 (1)设圆心坐标为(2,-a)(a>0),则圆心到直线x+y=2的距离d==2,∴a=2,∴该圆的标准方程为(x-2)2+(y+2)2=4.
(2)由题意知圆过(4,0),(0,2),(0,-2)三点,(4,0),(0,-2)两点的垂直平分线方程为
y+1=-2(x-2),
令y=0,解得x=,圆心为,半径为.
∴圆的标准方程为+y2=.
答案 (1)C (2)+y2=
考点二 与圆有关的最值问题
【例2】 已知实数x,y满足方程x2+y2-4x+1=0.
(1)求的最大值和最小值;
(2)求y-x的最大值和最小值;
(3)求x2+y2的最大值和最小值.
解 原方程可化为(x-2)2+y2=3,表示以(2,0)为圆心,为半径的圆.
(1)的几何意义是圆上一点与原点连线的斜率,
所以设=k,即y=kx.
当直线y=kx与圆相切时,斜率k取最大值或最小值,此时=,解得k=±(如图1).
所以的最大值为,最小值为-.
(2)y-x可看作是直线y=x+b在y轴上的截距,当直线y=x+b与圆相切时,纵截距b取得最大值或最小值,此时=,解得b=-2±(如图2).
所以y-x的最大值为-2+,最小值为-2-.
(3)x2+y2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点和圆心连线与圆的两个交点处取得最大值和最小值(如图3).
又圆心到原点的距离为=2,
所以x2+y2的最大值是(2+)2=7+4,x2+y2的最小值是(2-)2=7-4.
规律方法 把有关式子进行转化或利用所给式子的几何意义解题,充分体现了数形结合以及转化的数学思想,其中以下几类转化极为常见:
(1)形如m=的最值问题,可转化为动直线斜率的最值问题;
(2)形如t=ax+by的最值问题,可转化为动直线截距的最值问题;
(3)形如m=(x-a)2+(y-b)2的最值问题,可转化为两点间距离的平方的最值问题.
【训练2】 设点P是函数y=-图象上的任意一点,点Q坐标为(2a,a-3)(a∈R),则|PQ|的最小值为________.
解析 函数y=-的图象表示圆(x-1)2+y2=4在x轴及下方的部分,令点Q的坐标为(x,y),则得y=-3,即x-2y-6=0,作出图象如图所示,
由于圆心(1,0)到直线x-2y-6=0的距离d==>2,所以直线x-2y-6=0与圆(x-1)2+y2=4相离,因此|PQ|的最小值是-2.
答案 -2
考点三 与圆有关的轨迹问题
【例3】 设定点M(-3,4),动点N在圆x2+y2=4上运动,以OM,ON为邻边作平行四边形MONP,求点P的轨迹.
解 如图所示,设P(x,y),N(x0,y0),则线段OP的中点坐标为,线段MN的中点坐标为.由于平行四边形的对角线互相平分,
故=,=.从而
又N(x+3,y-4)在圆上,
故(x+3)2+(y-4)2=4.
因此所求轨迹为圆:(x+3)2+(y-4)2=4,但应除去两点和(点P在直线OM上时的情况).
规律方法 求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法:
(1)直接法,直接根据题目提供的条件列出方程;
(2)定义法,根据圆、直线等定义列方程;
(3)几何法,利用圆的几何性质列方程;
(4)代入法,找到要求点与已知点的关系,代入已知点满足的关系式等.
【训练3】 (2018·郑州模拟)已知线段AB的端点B在圆C1:x2+(y-4)2=16上运动,端点A的坐标为(4,0),线段AB的中点为M.
(1)试求M点的轨迹C2的方程;
(2)若圆C1与曲线C2交于C,D两点,试求线段CD的长.
解 (1)设M(x,y),B(x′,y′),
则由题意可得解得
∵点B在圆C1:x2+(y-4)2=16上,
∴(2x-4)2+(2y-4)2=16,即(x-2)2+(y-2)2=4.
∴M点的轨迹C2的方程为(x-2)2+(y-2)2=4.
(2)由方程组得直线CD的方程为x-y-1=0,
圆C1的圆心C1(0,4)到直线CD的距离d==,
又圆C1的半径为4,
∴线段CD的长为2=.
基础巩固题组
(建议用时:40分钟)
一、选择题
1.已知点A(1,-1),B(-1,1),则以线段AB为直径的圆的方程是( )
A.x2+y2=2 B.x2+y2=
C.x2+y2=1 D.x2+y2=4
解析 AB的中点坐标为(0,0),
|AB|==2,
∴圆的方程为x2+y2=2.
答案 A
2.方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则实数a的取值范围是( )
A.(-∞,-2)∪ B.
C.(-2,0) D.
解析 方程为+(y+a)2=1-a-表示圆,则1-a->0,解得-2<a<.
答案 D
3.(2018·厦门质检)圆C与x轴相切于T(1,0),与y轴正半轴交于两点A,B,且|AB|=2,则圆C的标准方程为( )
A.(x-1)2+(y-)2=2 B.(x-1)2+(y-2)2=2
C.(x+1)2+(y+)2=4 D.(x-1)2+(y-)2=4
解析 由题意得,圆C的半径为=,圆心坐标为(1,),∴圆C的标准方程为(x-1)2+(y-)2=2.
答案 A
4.点P(4,-2)与圆x2+y2=4上任一点连线的中点的轨迹方程是( )
A.(x-2)2+(y+1)2=1 B.(x-2)2+(y+1)2=4
C.(x+4)2+(y-2)2=4 D.(x+2)2+(y-1)2=1
解析 设圆上任一点为Q(x0,y0),PQ的中点为M(x,y),则解得因为点Q在圆x2+y2=4上,所以x+y=4,即(2x-4)2+(2y+2)2=4,
化简得(x-2)2+(y+1)2=1.
答案 A
5.(2015·全国Ⅱ卷)已知三点A(1,0),B(0,),C(2,),则△ABC外接圆的圆心到原点的距离为( )
A. B. C. D.
解析 由点B(0,),C(2,),得线段BC的垂直平分线方程为x=1,①
由点A(1,0),B(0,),得线段AB的垂直平分线方程为
y-=,②
联立①②,解得△ABC外接圆的圆心坐标为,
其到原点的距离为 =.
答案 B
二、填空题
6.(2018·长沙模拟)以抛物线y2=4x的焦点为圆心,与该抛物线的准线相切的圆的标准方程为________.
解析 抛物线y2=4x的焦点为(1,0),准线为x=-1,故所求圆的圆心为(1,0),半径为2,所以该圆的标准方程为(x-1)2+y2=4.
答案 (x-1)2+y2=4
7.(2018·宜昌模拟)已知圆C:x2+y2+kx+2y=-k2,当圆C的面积取最大值时,圆心C的坐标为________.
解析 圆C的方程可化为+(y+1)2=-k2+1.所以,当k=0时圆C的面积最大.
答案 (0,-1)
8.已知点M(1,0)是圆C:x2+y2-4x-2y=0内的一点,那么过点M的最短弦所在直线的方程是________.
解析 过点M的最短弦与CM垂直,圆C:x2+y2-4x-2y=0的圆心为C(2,1),∵kCM==1,∴最短弦所在直线的方程为y-0=-(x-1),即x+y-1=0.
答案 x+y-1=0
三、解答题
9.一圆经过A(4,2),B(-1,3)两点,且在两坐标轴上的四个截距的和为2,求此圆的方程.
解 设所求圆的方程为x2+y2+Dx+Ey+F=0(D2+E2-4F>0).
令y=0,得x2+Dx+F=0,所以x1+x2=-D.
令x=0,得y2+Ey+F=0,所以y1+y2=-E.
由题意知-D-E=2,即D+E+2=0.①
又因为圆过点A,B,所以16+4+4D+2E+F=0.②
1+9-D+3E+F=0.③
解①②③组成的方程组得D=-2,E=0,F=-12.
故所求圆的方程为x2+y2-2x-12=0.
10.已知点P(2,2),圆C:x2+y2-8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.
(1)求M的轨迹方程;
(2)当|OP|=|OM|时,求l的方程及△POM的面积.
解 (1)圆C的方程可化为x2+(y-4)2=16,所以圆心为C(0,4),半径为4.
设M(x,y),则=(x,y-4),=(2-x,2-y).
由题设知·=0,故x(2-x)+(y-4)(2-y)=0,
即(x-1)2+(y-3)2=2.
由于点P在圆C的内部,所以M的轨迹方程是(x-1)2+(y-3)2=2.
(2)由(1)可知M的轨迹是以点N(1,3)为圆心,为半径的圆.由于|OP|=|OM|,故O在线段PM的垂直平分线上,又P在圆N上,从而ON⊥PM.
因为ON的斜率为3,所以l的斜率为-,
故l的方程为x+3y-8=0.
又|OM|=|OP|=2,O到l的距离为,
所以|PM|=,S△POM=××=,
故△POM的面积为.
能力提升题组
(建议用时:20分钟)
11.若直线ax+2by-2=0(a>0,b>0)始终平分圆x2+y2-4x-2y-8=0的周长,则+的最小值为( )
A.1 B.5 C.4 D.3+2
解析 由题意知圆心C(2,1)在直线ax+2by-2=0上,
∴2a+2b-2=0,整理得a+b=1,
∴+=(a+b)=3++
≥3+2 =3+2,
当且仅当=,即b=2-,a=-1时,等号成立.
∴+的最小值为3+2.
答案 D
12.(2018·东北三省四校联考)已知圆C:(x-3)2+(y-4)2=1,设点P是圆C上的动点.记d=|PB|2+|PA|2,其中A(0,1),B(0,-1),则d的最大值为________.
解析 设P(x0,y0),d=|PB|2+|PA|2=x+(y0+1)2+x+(y0-1)2=2(x+y)+2.x+y为圆上任一点到原点距离的平方,∴(x+y)max=(5+1)2=36,∴dmax=74.
答案 74
13.(2017·全国Ⅲ卷)已知抛物线C:y2=2x,过点(2,0)的直线l交C于A,B两点,圆M是以线段AB为直径的圆.
(1)证明:坐标原点O在圆M上;
(2)设圆M过点P(4,-2),求直线l与圆M的方程.
(1)证明 设l:x=my+2,A(x1,y1),B(x2,y2),
联立消去x得y2-2my-4=0,
Δ=4m2+16恒大于0,y1+y2=2m,y1y2=-4.
·=x1x2+y1y2=(my1+2)(my2+2)+y1y2
=(m2+1)y1y2+2m(y1+y2)+4=-4(m2+1)+2m·2m+4=0.
所以⊥,即O在圆M上.
(2)解 由(1)可得x1+x2=m(y1+y2)+4=2m2+4.
故圆心M的坐标为(m2+2,m),圆M的半径r=.
由于圆M过点P(4,-2),因此·=0,
故(x1-4)(x2-4)+(y1+2)(y2+2)=0,
即x1x2-4(x1+x2)+y1y2+2(y1+y2)+20=0.
由(1)可得y1y2=-4,x1x2=4.
所以2m2-m-1=0,解得m=1或m=-.
当m=1时,直线l的方程为x-y-2=0,圆心M的坐标为(3,1),圆M的半径为,
圆M的方程为(x-3)2+(y-1)2=10.
当m=-时,直线l的方程为2x+y-4=0,圆心M的坐标为,圆M的半径为,
圆M的方程为+=.
相关资料
更多