还剩11页未读,
继续阅读
2019版高考数学(理)创新大一轮人教A全国通用版讲义:第九章平面解析几何第4节
展开
第4节 直线与圆、圆与圆的位置关系
最新考纲 1.能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系;2.能用直线和圆的方程解决一些简单的问题;3.初步了解用代数方法处理几何问题的思想.
知 识 梳 理
1.直线与圆的位置关系
设圆C:(x-a)2+(y-b)2=r2,直线l:Ax+By+C=0,圆心C(a,b)到直线l的距离为d,由
消去y(或x),得到关于x(或y)的一元二次方程,其判别式为Δ.
方法
位置关系
几何法
代数法
相交
d
Δ>0
相切
d=r
Δ=0
相离
d>r
Δ<0
2.圆与圆的位置关系
设两个圆的半径分别为R,r,R>r,圆心距为d,则两圆的位置关系可用下表来表示:
位置关系
相离
外切
相交
内切
内含
几何特征
d>R+r
d=R+r
R-r<d<R+r
d=R-r
d<R-r
代数特征
无实数解
一组实数解
两组实数解
一组实数解
无实数解
公切线条数
4
3
2
1
0
[常用结论与微点提醒]
1.圆的切线方程常用结论
(1)过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为x0x+y0y=r2.
(2)过圆(x-a)2+(y-b)2=r2上一点P(x0,y0)的圆的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2.
(3)过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程为x0x+y0y=r2.
2.过圆上一点作圆的切线有且只有一条;过圆外一点作圆的切线有且只有两条,若仅求得一条,除了考虑运算过程是否正确外,还要考虑斜率不存在的情况,以防漏解.
诊 断 自 测
1.思考辨析(在括号内打“√”或“×”)
(1)“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的必要不充分条件.( )
(2)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.( )
(3)如果两圆的圆心距小于两圆的半径之和,则两圆相交.( )
(4)过圆O:x2+y2=r2外一点P(x0,y0)作圆的两条切线,切点分别为A,B,则O,P,A,B四点共圆且直线AB的方程是x0x+y0y=r2.( )
解析 (1)“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的充分不必要条件;(2)除外切外,还有可能内切;(3)两圆还可能内切或内含.
答案 (1)× (2)× (3)× (4)√
2.圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为( )
A.内切 B.相交 C.外切 D.相离
解析 两圆圆心分别为(-2,0),(2,1),半径分别为2和3,圆心距d==.
∵3-2
答案 B
3.(2018·大连双基测试)已知直线y=mx与圆x2+y2-4x+2=0相切,则m值为( )
A.± B.±
C.± D.±1
解析 将y=mx代入x2+y2-4x+2=0,得(1+m2)x2-4x+2=0,因为直线与圆相切,所以Δ=(-4)2-4(1+m2)×2=8(1-m2)=0,解得m=±1.
答案 D
4.已知圆的方程为x2+y2=1,则在y轴上截距为的切线方程为________.
解析 在y轴上截距为且斜率不存在的直线显然不是切线,故设切线方程为y=kx+,则=1,所以k=±1,故所求切线方程为y=x+或y=-x+.
答案 x-y+=0或x+y-=0
5.(必修2P133A9改编)圆x2+y2-4=0与圆x2+y2-4x+4y-12=0的公共弦长为________.
解析 由得x-y+2=0.又圆x2+y2=4的圆心到直线x-y+2=0的距离为=.由勾股定理得弦长的一半为=,所以,所求弦长为2.
答案 2
考点一 直线与圆的位置关系
【例1】 (1)(2018·青岛测试)已知点M(a,b)在圆O:x2+y2=1外,则直线ax+by=1与圆O的位置关系是( )
A.相切 B.相交 C.相离 D.不确定
(2)(一题多解)圆x2+y2=1与直线y=kx+2没有公共点的充要条件是________.
解析 (1)因为M(a,b)在圆O:x2+y2=1外,所以a2+b2>1,而圆心O到直线ax+by=1的距离d==<1,故直线与圆O相交.
(2)法一 将直线方程代入圆方程,得(k2+1)x2+4kx+3=0,直线与圆没有公共点的充要条件是Δ=16k2-12(k2+1)<0,解得-<k<.
法二 圆心(0,0)到直线y=kx+2的距离d=,直线与圆没有公共点的充要条件是d>1,
即>1,解得-<k<.
答案 (1)B (2)-<k<
规律方法 判断直线与圆的位置关系的常见方法
(1)几何法:利用d与r的关系.
(2)代数法:联立方程之后利用Δ判断.
(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交.
上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题.
【训练1】 (1)圆(x-1)2+(y+2)2=6与直线2x+y-5=0的位置关系是( )
A.相切 B.相交但直线不过圆心
C.相交过圆心 D.相离
(2)(2018·湖北七市联考)已知圆C:(x-1)2+y2=r2(r>0),设条件p:0
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
解析 (1)由题意知圆心(1,-2)到直线2x+y-5=0的距离d==<且2×1+(-2)-5≠0,所以直线与圆相交但不过圆心.
(2)由题意知,圆心C(1,0)到直线x-y+3=0的距离d==2,至多有2点到直线的距离为1时,0
答案 (1)B (2)C
考点二 圆的切线、弦长问题
【例2】 (1)(2016·全国Ⅰ卷)设直线y=x+2a与圆C:x2+y2-2ay-2=0相交于A,B两点,若|AB|=2,则圆C的面积为________.
(2)过点P(2,4)引圆(x-1)2+(y-1)2=1的切线,则切线方程为________.
解析 (1)圆C:x2+y2-2ay-2=0,即C:x2+(y-a)2=a2+2,圆心为C(0,a),C到直线y=x+2a的距离为d==.又由|AB|=2,得+
=a2+2,解得a2=2,所以圆的面积为π(a2+2)=4π.
(2)当直线的斜率不存在时,直线方程为x=2,此时,圆心到直线的距离等于半径,直线与圆相切,符合题意;当直线的斜率存在时,设直线方程为y-4=k(x-2),即kx-y+4-2k=0,∵直线与圆相切,∴圆心到直线的距离等于半径,即d===1,
解得k=,
∴所求切线方程为x-y+4-2×=0,
即4x-3y+4=0.
综上,切线方程为x=2或4x-3y+4=0.
答案 (1)4π (2)x=2或4x-3y+4=0
规律方法 1.弦长的两种求法
(1)代数方法:将直线和圆的方程联立方程组,消元后得到一个一元二次方程.在判别式Δ>0的前提下,利用根与系数的关系,根据弦长公式求弦长.
(2)几何方法:若弦心距为d,圆的半径长为r,则弦长l=2.
2.圆的切线方程的两种求法
(1)代数法:设切线方程为y-y0=k(x-x0),与圆的方程组成方程组,消元后得到一个一元二次方程,然后令判别式Δ=0进而求得k.
(2)几何法:设切线方程为y-y0=k(x-x0),利用点到直线的距离公式表示出圆心到切线的距离d,然后令d=r,进而求出k.
【训练2】 (1)(2018·合肥测试)过点(3,1)作圆(x-2)2+(y-2)2=4的弦,其中最短弦的长为________.
(2)过原点O作圆x2+y2-6x-8y+20=0的两条切线,设切点分别为P,Q,则线段PQ的长为________.
解析 (1)设P(3,1),圆心C(2,2),则|PC|=,半径r=2,由题意知最短的弦过P(3,1)且与PC垂直,所以最短弦长为2=2.
(2)将圆的方程化为标准方程为(x-3)2+(y-4)2=5,则圆心为(3,4),半径长为.
由题意可设切线的方程为y=kx,则圆心(3,4)到直线y=kx的距离等于半径长,即=,解得k=或k=,则切线的方程为y=x或y=x.联立切线方程与圆的方程,解得两切点坐标分别为(4,2),,此即为P,Q的坐标,由两点间的距离公式得|PQ|=4.
答案 (1)2 (2)4
考点三 圆与圆的位置关系
【例3】 (2017·郑州调研)已知两圆x2+y2-2x-6y-1=0,x2+y2-10x-12y+m=0.
(1)m取何值时两圆外切?
(2)m取何值时两圆内切?
(3)当m=45时,求两圆的公共弦所在直线的方程和公共弦的长.
解 因为两圆的标准方程分别为(x-1)2+(y-3)2=11,
(x-5)2+(y-6)2=61-m,
所以两圆的圆心分别为(1,3),(5,6),半径分别为,,
(1)当两圆外切时,由=+,得m=25+10.
(2)当两圆内切时,因为定圆半径小于两圆圆心之间的距离5,所以-=5,解得m=25-10.
(3)由(x2+y2-2x-6y-1)-(x2+y2-10x-12y+45)=0,得两圆的公共弦所在直线的方程为4x+3y-23=0.
故两圆的公共弦的长为2=2.
规律方法 1.判断两圆的位置关系时常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.
2.若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差消去x2,y2项得到.
【训练3】 (1)已知圆M:x2+y2-2ay=0(a>0)截直线x+y=0所得线段的长度是2,则圆M与圆N:(x-1)2+(y-1)2=1的位置关系是( )
A.内切 B.相交 C.外切 D.相离
(2)(2018·九江模拟)已知圆C1:(x-a)2+(y+2)2=4与圆C2:(x+b)2+(y+2)2=1 相外切,则ab的最大值为( )
A. B. C. D.2
解析 (1)∵圆M:x2+(y-a)2=a2,∴圆心坐标为M(0,a),半径r1为a,圆心M到直线x+y=0的距离d=,由几何知识得+()2=a2,解得a=2.∴M(0,2),r1=2.又圆N的圆心坐标N(1,1),半径r2=1,
∴|MN|==,r1+r2=3,r1-r2=1.∴r1-r2<|MN|<r1+r2,∴两圆相交,故选B.
(2)由圆C1与圆C2相外切,可得=2+1=3,即(a+b)2=9,
根据基本不等式可知ab≤=,
当且仅当a=b时等号成立.
答案 (1)B (2)C
基础巩固题组
(建议用时:40分钟)
一、选择题
1.(2016·全国Ⅱ卷)圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=( )
A.- B.- C. D.2
解析 由圆的方程x2+y2-2x-8y+13=0得圆心坐标为(1,4),由点到直线的距离公式得d==1,解之得a=-.
答案 A
2.(2017·长春模拟)过点(3,1)作圆(x-1)2+y2=r2的切线有且只有一条,则该切线的方程为( )
A.2x+y-5=0 B.2x+y-7=0
C.x-2y-5=0 D.x-2y-7=0
解析 ∵过点(3,1)作圆(x-1)2+y2=r2的切线有且只有一条,∴点(3,1)在圆(x-1)2+y2=r2上,
∵圆心与切点连线的斜率k==,
∴切线的斜率为-2,
则圆的切线方程为y-1=-2(x-3),即2x+y-7=0.
答案 B
3.(2018·洛阳一模)直线l:y=kx+1与圆O:x2+y2=1相交于A,B两点,则“k=1”是“|AB|=”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
解析 依题意,因|AB|=,则圆心O到直线l的距离等于=,即有=,k=±1.因此,“k=1”是“|AB|=”的充分不必要条件,选A.
答案 A
4.圆x2+2x+y2+4y-3=0上到直线x+y+1=0的距离为的点共有( )
A.1个 B.2个 C.3个 D.4个
解析 圆的方程化为(x+1)2+(y+2)2=8,圆心(-1,-2)到直线距离d==,半径是2,结合图形可知有3个符合条件的点.
答案 C
5.(2018·福州模拟)过点P(1,-2)作圆C:(x-1)2+y2=1的两条切线,切点分别为A,B,则AB所在直线的方程为( )
A.y=- B.y=- C.y=- D.y=-
解析 圆(x-1)2+y2=1的圆心为(1,0),半径为1,以|PC|==2为直径的圆的方程为(x-1)2+(y+1)2=1,
将两圆的方程相减得AB所在直线的方程为2y+1=0,即y=-.
答案 B
二、填空题
6.(2016·全国Ⅲ卷) 已知直线l:x-y+6=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,则|CD|=________.
解析 由圆x2+y2=12知圆心O(0,0),半径r=2,
∴圆心(0,0)到直线x-y+6=0的距离d==3,|AB|=2=2.过C作CE⊥BD于E.
如图所示,则|CE|=|AB|=2.
∵直线l的方程为x-y+6=0,
∴直线l的倾斜角∠BPD=30°,从而∠BDP=60°,因此|CD|===4.
答案 4
7.已知直线l:x+ay-1=0(a∈R)是圆C:x2+y2-4x-2y+1=0的对称轴.过点A(-4,a)作圆C的一条切线,切点为B,则|AB|=________.
解析 由于直线x+ay-1=0是圆C:x2+y2-4x-2y+1=0的对称轴,
则圆心C(2,1)满足直线方程x+ay-1=0,
所以2+a-1=0,解得a=-1,
所以A点坐标为(-4,-1).
从而|AC|2=36+4=40.
又r=2,所以|AB|2=40-4=36.
即|AB|=6.
答案 6
8.(2018·兰州月考)点P在圆C1:x2+y2-8x-4y+11=0上,点Q在圆C2:x2+y2+4x+2y+1=0上,则|PQ|的最小值是________.
解析 把圆C1、圆C2的方程都化成标准形式,得
(x-4)2+(y-2)2=9,(x+2)2+(y+1)2=4.
圆C1的圆心坐标是(4,2),半径长是3;圆C2的圆心坐标是(-2,-1),半径是2.
圆心距d==3>5.故圆C1与圆C2相离,所以,|PQ|的最小值是3-5.
答案 3-5
三、解答题
9.已知圆C经过点A(2,-1),和直线x+y=1相切,且圆心在直线y=-2x上.
(1)求圆C的方程;
(2)已知直线l经过原点,并且被圆C截得的弦长为2,求直线l的方程.
解 (1)设圆心的坐标为C(a,-2a),
则=.
化简,得a2-2a+1=0,解得a=1.
所以C点坐标为(1,-2),
半径r=|AC|==.
故圆C的方程为(x-1)2+(y+2)2=2.
(2)①当直线l的斜率不存在时,直线l的方程为x=0,此时直线l被圆C截得的弦长为2,满足条件.
②当直线l的斜率存在时,设直线l的方程为y=kx,
由题意得=1,解得k=-,
则直线l的方程为y=-x.
综上所述,直线l的方程为x=0或3x+4y=0.
10.(2015·全国Ⅰ卷)已知过点A(0,1)且斜率为k的直线l与圆C:(x-2)2+(y-3)2=1交于M,N两点.
(1)求k的取值范围;
(2)若·=12,其中O为坐标原点,求|MN|.
解 (1)易知圆心坐标为(2,3),半径r=1,
由题设,可知直线l的方程为y=kx+1,
因为l与C交于两点,所以<1.
解得
所以k的取值范围为.
(2)设M(x1,y1),N(x2,y2).
将y=kx+1代入方程(x-2)2+(y-3)2=1,整理得
(1+k2)x2-4(1+k)x+7=0.
所以x1+x2=,x1x2=.
·=x1x2+y1y2
=(1+k2)x1x2+k(x1+x2)+1=+8.
由题设可得+8=12,
解得k=1,所以l的方程为y=x+1.
故圆心C在l上,所以|MN|=2.
能力提升题组
(建议用时:20分钟)
11.(2018·衡水中学模拟)已知圆C:(x-1)2+y2=25,则过点P(2,-1)的圆C的所有弦中,以最长弦和最短弦为对角线的四边形的面积是( )
A.10 B.9
C.10 D.9
解析 易知P在圆C内部,最长弦为圆的直径10,
又最短弦所在直线与最长弦垂直,且|PC|=,
∴最短弦的长为2=2=2,
故所求四边形的面积S=×10×2=10.
答案 C
12.(2018·湖北四地七校联考)过点A(1,)的直线l将圆C:(x-2)2+y2=4分成两段弧,当劣弧所对的圆心角最小时,直线l的斜率k=________.
解析 易知点A(1,)在圆(x-2)2+y2=4的内部,
圆心C的坐标为(2,0),当直线l被圆截得的弦的弦心距最长时,劣弧所对的圆心角最小,此时l⊥CA,如图所示,
所以k=-=-=.
答案
13.(2017·全国Ⅲ卷)在直角坐标系xOy中,曲线y=x2+mx-2与x轴交于A,B两点,点C的坐标为(0,1).当m变化时,解答下列问题:
(1)能否出现AC⊥BC的情况?说明理由;
(2)证明过A,B,C三点的圆在y轴上截得的弦长为定值.
(1)解 不能出现AC⊥BC的情况,理由如下:
设A(x1,0),B(x2,0),
则x1,x2满足方程x2+mx-2=0,
所以x1x2=-2.
又C的坐标为(0,1),
故AC的斜率与BC的斜率之积为·=-,
所以不能出现AC⊥BC的情况.
(2)证明 BC的中点坐标为,可得BC的中垂线方程为y-=x2.
由(1)可得x1+x2=-m,
所以AB的中垂线方程为x=-.
联立
又x+mx2-2=0,③
由①②③解得x=-,y=-.
所以过A,B,C三点的圆的圆心坐标为,半径r=.
故圆在y轴上截得的弦长为2=3,
即过A,B,C三点的圆在y轴上截得的弦长为定值.
最新考纲 1.能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系;2.能用直线和圆的方程解决一些简单的问题;3.初步了解用代数方法处理几何问题的思想.
知 识 梳 理
1.直线与圆的位置关系
设圆C:(x-a)2+(y-b)2=r2,直线l:Ax+By+C=0,圆心C(a,b)到直线l的距离为d,由
消去y(或x),得到关于x(或y)的一元二次方程,其判别式为Δ.
方法
位置关系
几何法
代数法
相交
d
相切
d=r
Δ=0
相离
d>r
Δ<0
2.圆与圆的位置关系
设两个圆的半径分别为R,r,R>r,圆心距为d,则两圆的位置关系可用下表来表示:
位置关系
相离
外切
相交
内切
内含
几何特征
d>R+r
d=R+r
R-r<d<R+r
d=R-r
d<R-r
代数特征
无实数解
一组实数解
两组实数解
一组实数解
无实数解
公切线条数
4
3
2
1
0
[常用结论与微点提醒]
1.圆的切线方程常用结论
(1)过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为x0x+y0y=r2.
(2)过圆(x-a)2+(y-b)2=r2上一点P(x0,y0)的圆的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2.
(3)过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程为x0x+y0y=r2.
2.过圆上一点作圆的切线有且只有一条;过圆外一点作圆的切线有且只有两条,若仅求得一条,除了考虑运算过程是否正确外,还要考虑斜率不存在的情况,以防漏解.
诊 断 自 测
1.思考辨析(在括号内打“√”或“×”)
(1)“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的必要不充分条件.( )
(2)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.( )
(3)如果两圆的圆心距小于两圆的半径之和,则两圆相交.( )
(4)过圆O:x2+y2=r2外一点P(x0,y0)作圆的两条切线,切点分别为A,B,则O,P,A,B四点共圆且直线AB的方程是x0x+y0y=r2.( )
解析 (1)“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的充分不必要条件;(2)除外切外,还有可能内切;(3)两圆还可能内切或内含.
答案 (1)× (2)× (3)× (4)√
2.圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为( )
A.内切 B.相交 C.外切 D.相离
解析 两圆圆心分别为(-2,0),(2,1),半径分别为2和3,圆心距d==.
∵3-2
3.(2018·大连双基测试)已知直线y=mx与圆x2+y2-4x+2=0相切,则m值为( )
A.± B.±
C.± D.±1
解析 将y=mx代入x2+y2-4x+2=0,得(1+m2)x2-4x+2=0,因为直线与圆相切,所以Δ=(-4)2-4(1+m2)×2=8(1-m2)=0,解得m=±1.
答案 D
4.已知圆的方程为x2+y2=1,则在y轴上截距为的切线方程为________.
解析 在y轴上截距为且斜率不存在的直线显然不是切线,故设切线方程为y=kx+,则=1,所以k=±1,故所求切线方程为y=x+或y=-x+.
答案 x-y+=0或x+y-=0
5.(必修2P133A9改编)圆x2+y2-4=0与圆x2+y2-4x+4y-12=0的公共弦长为________.
解析 由得x-y+2=0.又圆x2+y2=4的圆心到直线x-y+2=0的距离为=.由勾股定理得弦长的一半为=,所以,所求弦长为2.
答案 2
考点一 直线与圆的位置关系
【例1】 (1)(2018·青岛测试)已知点M(a,b)在圆O:x2+y2=1外,则直线ax+by=1与圆O的位置关系是( )
A.相切 B.相交 C.相离 D.不确定
(2)(一题多解)圆x2+y2=1与直线y=kx+2没有公共点的充要条件是________.
解析 (1)因为M(a,b)在圆O:x2+y2=1外,所以a2+b2>1,而圆心O到直线ax+by=1的距离d==<1,故直线与圆O相交.
(2)法一 将直线方程代入圆方程,得(k2+1)x2+4kx+3=0,直线与圆没有公共点的充要条件是Δ=16k2-12(k2+1)<0,解得-<k<.
法二 圆心(0,0)到直线y=kx+2的距离d=,直线与圆没有公共点的充要条件是d>1,
即>1,解得-<k<.
答案 (1)B (2)-<k<
规律方法 判断直线与圆的位置关系的常见方法
(1)几何法:利用d与r的关系.
(2)代数法:联立方程之后利用Δ判断.
(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交.
上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题.
【训练1】 (1)圆(x-1)2+(y+2)2=6与直线2x+y-5=0的位置关系是( )
A.相切 B.相交但直线不过圆心
C.相交过圆心 D.相离
(2)(2018·湖北七市联考)已知圆C:(x-1)2+y2=r2(r>0),设条件p:0
C.充要条件 D.既不充分也不必要条件
解析 (1)由题意知圆心(1,-2)到直线2x+y-5=0的距离d==<且2×1+(-2)-5≠0,所以直线与圆相交但不过圆心.
(2)由题意知,圆心C(1,0)到直线x-y+3=0的距离d==2,至多有2点到直线的距离为1时,0
考点二 圆的切线、弦长问题
【例2】 (1)(2016·全国Ⅰ卷)设直线y=x+2a与圆C:x2+y2-2ay-2=0相交于A,B两点,若|AB|=2,则圆C的面积为________.
(2)过点P(2,4)引圆(x-1)2+(y-1)2=1的切线,则切线方程为________.
解析 (1)圆C:x2+y2-2ay-2=0,即C:x2+(y-a)2=a2+2,圆心为C(0,a),C到直线y=x+2a的距离为d==.又由|AB|=2,得+
=a2+2,解得a2=2,所以圆的面积为π(a2+2)=4π.
(2)当直线的斜率不存在时,直线方程为x=2,此时,圆心到直线的距离等于半径,直线与圆相切,符合题意;当直线的斜率存在时,设直线方程为y-4=k(x-2),即kx-y+4-2k=0,∵直线与圆相切,∴圆心到直线的距离等于半径,即d===1,
解得k=,
∴所求切线方程为x-y+4-2×=0,
即4x-3y+4=0.
综上,切线方程为x=2或4x-3y+4=0.
答案 (1)4π (2)x=2或4x-3y+4=0
规律方法 1.弦长的两种求法
(1)代数方法:将直线和圆的方程联立方程组,消元后得到一个一元二次方程.在判别式Δ>0的前提下,利用根与系数的关系,根据弦长公式求弦长.
(2)几何方法:若弦心距为d,圆的半径长为r,则弦长l=2.
2.圆的切线方程的两种求法
(1)代数法:设切线方程为y-y0=k(x-x0),与圆的方程组成方程组,消元后得到一个一元二次方程,然后令判别式Δ=0进而求得k.
(2)几何法:设切线方程为y-y0=k(x-x0),利用点到直线的距离公式表示出圆心到切线的距离d,然后令d=r,进而求出k.
【训练2】 (1)(2018·合肥测试)过点(3,1)作圆(x-2)2+(y-2)2=4的弦,其中最短弦的长为________.
(2)过原点O作圆x2+y2-6x-8y+20=0的两条切线,设切点分别为P,Q,则线段PQ的长为________.
解析 (1)设P(3,1),圆心C(2,2),则|PC|=,半径r=2,由题意知最短的弦过P(3,1)且与PC垂直,所以最短弦长为2=2.
(2)将圆的方程化为标准方程为(x-3)2+(y-4)2=5,则圆心为(3,4),半径长为.
由题意可设切线的方程为y=kx,则圆心(3,4)到直线y=kx的距离等于半径长,即=,解得k=或k=,则切线的方程为y=x或y=x.联立切线方程与圆的方程,解得两切点坐标分别为(4,2),,此即为P,Q的坐标,由两点间的距离公式得|PQ|=4.
答案 (1)2 (2)4
考点三 圆与圆的位置关系
【例3】 (2017·郑州调研)已知两圆x2+y2-2x-6y-1=0,x2+y2-10x-12y+m=0.
(1)m取何值时两圆外切?
(2)m取何值时两圆内切?
(3)当m=45时,求两圆的公共弦所在直线的方程和公共弦的长.
解 因为两圆的标准方程分别为(x-1)2+(y-3)2=11,
(x-5)2+(y-6)2=61-m,
所以两圆的圆心分别为(1,3),(5,6),半径分别为,,
(1)当两圆外切时,由=+,得m=25+10.
(2)当两圆内切时,因为定圆半径小于两圆圆心之间的距离5,所以-=5,解得m=25-10.
(3)由(x2+y2-2x-6y-1)-(x2+y2-10x-12y+45)=0,得两圆的公共弦所在直线的方程为4x+3y-23=0.
故两圆的公共弦的长为2=2.
规律方法 1.判断两圆的位置关系时常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.
2.若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差消去x2,y2项得到.
【训练3】 (1)已知圆M:x2+y2-2ay=0(a>0)截直线x+y=0所得线段的长度是2,则圆M与圆N:(x-1)2+(y-1)2=1的位置关系是( )
A.内切 B.相交 C.外切 D.相离
(2)(2018·九江模拟)已知圆C1:(x-a)2+(y+2)2=4与圆C2:(x+b)2+(y+2)2=1 相外切,则ab的最大值为( )
A. B. C. D.2
解析 (1)∵圆M:x2+(y-a)2=a2,∴圆心坐标为M(0,a),半径r1为a,圆心M到直线x+y=0的距离d=,由几何知识得+()2=a2,解得a=2.∴M(0,2),r1=2.又圆N的圆心坐标N(1,1),半径r2=1,
∴|MN|==,r1+r2=3,r1-r2=1.∴r1-r2<|MN|<r1+r2,∴两圆相交,故选B.
(2)由圆C1与圆C2相外切,可得=2+1=3,即(a+b)2=9,
根据基本不等式可知ab≤=,
当且仅当a=b时等号成立.
答案 (1)B (2)C
基础巩固题组
(建议用时:40分钟)
一、选择题
1.(2016·全国Ⅱ卷)圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=( )
A.- B.- C. D.2
解析 由圆的方程x2+y2-2x-8y+13=0得圆心坐标为(1,4),由点到直线的距离公式得d==1,解之得a=-.
答案 A
2.(2017·长春模拟)过点(3,1)作圆(x-1)2+y2=r2的切线有且只有一条,则该切线的方程为( )
A.2x+y-5=0 B.2x+y-7=0
C.x-2y-5=0 D.x-2y-7=0
解析 ∵过点(3,1)作圆(x-1)2+y2=r2的切线有且只有一条,∴点(3,1)在圆(x-1)2+y2=r2上,
∵圆心与切点连线的斜率k==,
∴切线的斜率为-2,
则圆的切线方程为y-1=-2(x-3),即2x+y-7=0.
答案 B
3.(2018·洛阳一模)直线l:y=kx+1与圆O:x2+y2=1相交于A,B两点,则“k=1”是“|AB|=”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
解析 依题意,因|AB|=,则圆心O到直线l的距离等于=,即有=,k=±1.因此,“k=1”是“|AB|=”的充分不必要条件,选A.
答案 A
4.圆x2+2x+y2+4y-3=0上到直线x+y+1=0的距离为的点共有( )
A.1个 B.2个 C.3个 D.4个
解析 圆的方程化为(x+1)2+(y+2)2=8,圆心(-1,-2)到直线距离d==,半径是2,结合图形可知有3个符合条件的点.
答案 C
5.(2018·福州模拟)过点P(1,-2)作圆C:(x-1)2+y2=1的两条切线,切点分别为A,B,则AB所在直线的方程为( )
A.y=- B.y=- C.y=- D.y=-
解析 圆(x-1)2+y2=1的圆心为(1,0),半径为1,以|PC|==2为直径的圆的方程为(x-1)2+(y+1)2=1,
将两圆的方程相减得AB所在直线的方程为2y+1=0,即y=-.
答案 B
二、填空题
6.(2016·全国Ⅲ卷) 已知直线l:x-y+6=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,则|CD|=________.
解析 由圆x2+y2=12知圆心O(0,0),半径r=2,
∴圆心(0,0)到直线x-y+6=0的距离d==3,|AB|=2=2.过C作CE⊥BD于E.
如图所示,则|CE|=|AB|=2.
∵直线l的方程为x-y+6=0,
∴直线l的倾斜角∠BPD=30°,从而∠BDP=60°,因此|CD|===4.
答案 4
7.已知直线l:x+ay-1=0(a∈R)是圆C:x2+y2-4x-2y+1=0的对称轴.过点A(-4,a)作圆C的一条切线,切点为B,则|AB|=________.
解析 由于直线x+ay-1=0是圆C:x2+y2-4x-2y+1=0的对称轴,
则圆心C(2,1)满足直线方程x+ay-1=0,
所以2+a-1=0,解得a=-1,
所以A点坐标为(-4,-1).
从而|AC|2=36+4=40.
又r=2,所以|AB|2=40-4=36.
即|AB|=6.
答案 6
8.(2018·兰州月考)点P在圆C1:x2+y2-8x-4y+11=0上,点Q在圆C2:x2+y2+4x+2y+1=0上,则|PQ|的最小值是________.
解析 把圆C1、圆C2的方程都化成标准形式,得
(x-4)2+(y-2)2=9,(x+2)2+(y+1)2=4.
圆C1的圆心坐标是(4,2),半径长是3;圆C2的圆心坐标是(-2,-1),半径是2.
圆心距d==3>5.故圆C1与圆C2相离,所以,|PQ|的最小值是3-5.
答案 3-5
三、解答题
9.已知圆C经过点A(2,-1),和直线x+y=1相切,且圆心在直线y=-2x上.
(1)求圆C的方程;
(2)已知直线l经过原点,并且被圆C截得的弦长为2,求直线l的方程.
解 (1)设圆心的坐标为C(a,-2a),
则=.
化简,得a2-2a+1=0,解得a=1.
所以C点坐标为(1,-2),
半径r=|AC|==.
故圆C的方程为(x-1)2+(y+2)2=2.
(2)①当直线l的斜率不存在时,直线l的方程为x=0,此时直线l被圆C截得的弦长为2,满足条件.
②当直线l的斜率存在时,设直线l的方程为y=kx,
由题意得=1,解得k=-,
则直线l的方程为y=-x.
综上所述,直线l的方程为x=0或3x+4y=0.
10.(2015·全国Ⅰ卷)已知过点A(0,1)且斜率为k的直线l与圆C:(x-2)2+(y-3)2=1交于M,N两点.
(1)求k的取值范围;
(2)若·=12,其中O为坐标原点,求|MN|.
解 (1)易知圆心坐标为(2,3),半径r=1,
由题设,可知直线l的方程为y=kx+1,
因为l与C交于两点,所以<1.
解得
(2)设M(x1,y1),N(x2,y2).
将y=kx+1代入方程(x-2)2+(y-3)2=1,整理得
(1+k2)x2-4(1+k)x+7=0.
所以x1+x2=,x1x2=.
·=x1x2+y1y2
=(1+k2)x1x2+k(x1+x2)+1=+8.
由题设可得+8=12,
解得k=1,所以l的方程为y=x+1.
故圆心C在l上,所以|MN|=2.
能力提升题组
(建议用时:20分钟)
11.(2018·衡水中学模拟)已知圆C:(x-1)2+y2=25,则过点P(2,-1)的圆C的所有弦中,以最长弦和最短弦为对角线的四边形的面积是( )
A.10 B.9
C.10 D.9
解析 易知P在圆C内部,最长弦为圆的直径10,
又最短弦所在直线与最长弦垂直,且|PC|=,
∴最短弦的长为2=2=2,
故所求四边形的面积S=×10×2=10.
答案 C
12.(2018·湖北四地七校联考)过点A(1,)的直线l将圆C:(x-2)2+y2=4分成两段弧,当劣弧所对的圆心角最小时,直线l的斜率k=________.
解析 易知点A(1,)在圆(x-2)2+y2=4的内部,
圆心C的坐标为(2,0),当直线l被圆截得的弦的弦心距最长时,劣弧所对的圆心角最小,此时l⊥CA,如图所示,
所以k=-=-=.
答案
13.(2017·全国Ⅲ卷)在直角坐标系xOy中,曲线y=x2+mx-2与x轴交于A,B两点,点C的坐标为(0,1).当m变化时,解答下列问题:
(1)能否出现AC⊥BC的情况?说明理由;
(2)证明过A,B,C三点的圆在y轴上截得的弦长为定值.
(1)解 不能出现AC⊥BC的情况,理由如下:
设A(x1,0),B(x2,0),
则x1,x2满足方程x2+mx-2=0,
所以x1x2=-2.
又C的坐标为(0,1),
故AC的斜率与BC的斜率之积为·=-,
所以不能出现AC⊥BC的情况.
(2)证明 BC的中点坐标为,可得BC的中垂线方程为y-=x2.
由(1)可得x1+x2=-m,
所以AB的中垂线方程为x=-.
联立
又x+mx2-2=0,③
由①②③解得x=-,y=-.
所以过A,B,C三点的圆的圆心坐标为,半径r=.
故圆在y轴上截得的弦长为2=3,
即过A,B,C三点的圆在y轴上截得的弦长为定值.
相关资料
更多