2020高考数学理科大一轮复习导学案:第十章概率10.1
展开第十章 计数原理、概率、随机变量及其分布
知识点一 分类加法计数原理
完成一件事有n类不同的方案,在第一类方案中有m1种不同的方法,在第二类方案中有m2种不同的方法,……,在第n类方案中有mn种不同的方法,则完成这件事情,共有N=m1+m2+…+mn种不同的方法.
1.从3名女同学和2名男同学中选1人主持本班的某次主题班会,则不同的选法种数为( B )
A.6 B.5
C.3 D.2
解析:“完成这件事”即选出1人当主持人,可分选女主持人和男主持人两类进行,分别有3种选法和2种选法,所以共有3+2=5种不同的选法.
2.如果把个位数是1,且恰有3个数字相同的四位数叫做“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有12个.
解析:由题意知本题是一个分类计数问题.
当组成的数字有三个1,三个2,三个3,三个4时共有4种情况.当有三个1时:2 111,3 111,4 111,1 211,1 311,1 411,1 121,1 131,1 141,有9种,当有三个2,3,4时:2 221,3 331,4 441,有3种,根据分类加法计数原理可知,共有12种结果.
知识点二 分步乘法计数原理
完成一件事情需要分成n个不同的步骤,完成第一步有m1种不同的方法,完成第二步有m2种不同的方法,……,完成第n步有mn种不同的方法,那么完成这件事情共有N=m1×m2×…×mn种不同的方法.
3.5位同学报名参加两个课外活动小组,每位同学限报其中一个小组,则不同的报名方法有32种(用数字作答).
解析:每位同学都有2种报名方法,因此,可分五步安排5名同学报名,由分步乘法计数原理,总的报名方法共2×2×2×2×2=32(种).
4.已知某公园有5个门,从任一门进,另一门出,则不同的走法的种数为20(用数字作答).
解析:分两步,第一步选一个门进有5种方法,第二步再选一个门出有4种方法,所以共有5×4=20种走法.
5.如图,从A城到B城有3条路;从B城到D城有4条路;从A城到C城有4条路,从C城到D城有5条路,则某旅客从A城到D城共有32条不同的路线.
解析:不同路线共有3×4+4×5=32(条).
1.两个不同点
(1)分类问题中的每一个方法都能完成这件事.
(2)分步问题中每步的每一个方法都只能完成这件事的一部分.
2.三个注意点
(1)应用两个计数原理首先要弄清楚先分类还是先分步.
(2)分类要做到“不重不漏”,正确把握分类标准.
(3)分步要做到“步骤完整”,步步相连.
考向一 分类加法计数原理
【例1】 (1)已知椭圆+=1,若a∈{2,4,6,8},b∈{1,2,3,4,5,6,7,8},这样的椭圆有________个( )
A.12 B.16
C.28 D.32
(2)我们把中间位数上的数字最大,而两边依次减小的多位数称为“凸数”.如132,341等,那么由1,2,3,4,5可以组成无重复数字的三位“凸数”的个数是________.
【解析】 (1)解法1:若焦点在x轴上,则a>b,a=2时,有1个;a=4时,有3个;a=6时,有5个;a=8时,有7个,共有1+3+5+7=16个.
若焦点在y轴上,则b>a,b=3时,有1个;b=4时,有1个;b=5时,有2个;b=6时,有2个;b=7时,有3个;b=8时,有3个.共有1+1+2+2+3+3=12个.故共有16+12=28个.
解法2:a=b时有4种情况,故椭圆个数为4×8-4=28个.
(2)根据“凸数”的特点,中间的数字只能是3,4,5,故分三类,第一类,当中间数字为“3”时,此时有2种(132,231);
第二类,当中间数字为“4”时,从1,2,3中任取两个放在4的两边,故有6种;
第三类,当中间数字为“5”时,从1,2,3,4中任取两个放在5的两边,故有12种;
根据分类加法计数原理,得到由1,2,3,4,5可以组成无重复数字的三位“凸数”的个数是2+6+12=20.
【答案】 (1)C (2)20
1根据问题的特点确定一个合适的分类标准,分类标准要统一,不能遗漏.
2分类时,注意完成这件事的任何一种方法必须属于某一类,不能重复.)
(1)从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为( D )
A.3 B.4
C.6 D.8
(2)三个人踢毽,互相传递,每人每次只能踢一下,由甲开始踢,经过4次传递后,毽又被踢回给甲,则不同的传递方式共有( B )
A.4种 B.6种
C.10种 D.16种
解析:(1)当公比为2时,等比数列可为1,2,4或2,4,8;当公比为3时,等比数列可为1,3,9;当公比为时,等比数列可为4,6,9.同理,公比为,,时,共有4个.故共有2+1+1+4=8(个).
(2)分两类:甲第一次踢给乙时,满足条件有3种方法(如图),
同理,甲先传给丙时,满足条件有3种踢法.
由分类加法计数原理,共有3+3=6种传递方法.
考向二 分步乘法计数原理
【例2】 (1)甲与其四位同事各有一辆私家车,车牌尾数分别是0,0,2,1,5,为遵守当地某月5日至9日5天的限行规定(奇数日车牌尾数为奇数的车通行,偶数日车牌尾数为偶数的车通行),五人商议拼车出行,每天任选一辆符合规定的车,但甲的车最多只能用一天,则不同的用车方案的种数为( )
A.5 B.24
C.32 D.64
(2)某公司准备在一幢“五角楼”的五个角装上五盏3种不同颜色的灯,要求相邻两盏灯的颜色不同,则不同的安装方法有________种.
【解析】 (1)5日至9日,分别为5,6,7,8,9日,有3天奇数日,2天偶数日.第一步,安排奇数日出行,每天都有2种选择,共有23=8(种);第二步,安排偶数日出行分两类,第一类,先选1天安排甲的车,另外1天安排其他车,有2×2=4(种),第二类,不安排甲的车,每天都有2种选择,共有22=4(种),共计4+4=8(种).根据分步乘法计数原理,不同的用车方案种数为8×8=64.故选D.
(2)如图,按A,B,C,D,E的顺序开始安装灯,则A角有3种装法,B角有2种装法,安装C角的灯可分两类进行:①当C角与A角灯的颜色相同时,D,E角灯的装法有2种;②当C角与A角灯的颜色不同时,D,E角灯的装法有3种.根据两个基本原理可得,不同的安装方法共有3×2×(2+3)=30(种).
【答案】 (1)D (2)30
利用分步乘法计数原理解决问题时应注意:
1要按事件发生的过程合理分步,即分步是有先后顺序的,以元素或位置为主体的计数问题,通常先满足特殊元素或位置,再考虑其他元素或位置;
2对完成每一步的不同方法种数要根据条件准确确定.
一个旅游景区的游览线路如图所示,某人从P点处进,Q点处出,沿图中线路游览A,B,C三个景点及沿途风景,则不同(除交汇点O外)的游览线路有48种.(用数字作答)
解析:根据题意,从点P处进入后,参观第一个景点时,有6个路口可以选择,从中任选一个,有6种选法;参观完第一个景点,参观第二个景点时,有4个路口可以选择,从中任选一个,有4种选法;参观完第二个景点,参观第三个景点时,有2个路口可以选择,从中任取一个,有2种选法.由分步乘法计数原理知,共有6×4×2=48(种)不同游览线路.
考向三 两个计数原理的综合应用
方向1 计数问题
【例3】 (2019·河南商丘二模)高考结束后6名同学游览我市包括日月湖在内的6个景区,每名同学任选一个景区游览,则有且只有两名同学选择日月湖景区的方案有( )
A.A×A种 B.A×54种
C.C×A种 D.C×54种
【解析】 根据题意,分2步进行分析:①先从6名同学中任选2人,去日月湖景区旅游,有C种方案,②对于剩下的4名同学,每人都有5种选择,则这4人有5×5×5×5=54种方案,则有且只有两名同学选择日月湖景区的方案有C×54种,故选D.
【答案】 D
方向2 与几何有关的问题
【例4】 如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是( )
A.48 B.18
C.24 D.36
【解析】 第1类,对于每一条棱,都可以与两个侧面构成“正交线面对”,这样的“正交线面对”有2×12=24(个);第2类,对于每一条面对角线,都可以与一个对角面构成“正交线面对”,这样的“正交线面对”有12个.所以正方体中“正交线面对”共有24+12=36(个).
【答案】 D
方向3 涂色问题
【例5】 如图一个地区分为五个行政区域,现给该地图着色,要求相邻区域不得使用同一种颜色,现有四种颜色可供选择,则不同的着色方法共有________种.(用数字作答)
【解析】 由题意可知,当选用三种颜色着色时,由分步乘法计数原理得,有CCC=24(种)方法,当选用四种颜色着色时,由分步乘法计数原理得,有2CCCC=48(种)方法,再据分类加法计数原理可得有24+48=72(种)方法.
【答案】 72
利用两个计数原理解决应用问题的一般思路
(1)弄清完成一件事是做什么.
(2)确定是先分类后分步,还是先分步后分类.
(3)弄清分步、分类的标准是什么.
(4)利用两个计数原理求解.
1.(方向1)(2019·广东珠海模拟)将5个不同的球放入4个不同的盒子中,每个盒子至少放一个球,则不同的放法共有( C )
A.480种 B.360种
C.240种 D.120种
解析:根据题意,将5个不同的球放入4个不同的盒子中,每个盒子至少放一个球,则必须有2个小球放入1个盒子,其余的小球各单独放入一个盒子,分2步进行分析:①先将5个小球分成4组,有C=10种分法;②将分好的4组全排列,放入4个盒子,有A=24种情况,则不同放法有10×24=240种.故选C.
2.(方向2)如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”.在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是( B )
A.60 B.48
C.36 D.24
解析:长方体的6个表面构成的“平行线面组”的个数为6×6=36,另外含4个顶点的6个面(非表面)构成的“平行线面组”的个数为6×2=12,故符合条件的“平行线面组”的个数是36+12=48.
3.(方向3)用红、黄、蓝三种颜色去涂图中标号为1,2,…,9的9个小正方形(如图),使得任意相邻(有公共边)的小正方形所涂颜色都不相同,且标号为1,5,9的小正方形涂相同的颜色,则符合条件的所有涂法共有108种.
1 | 2 | 3 |
4 | 5 | 6 |
7 | 8 | 9 |
解析:把区域分为三部分,第一部分1,5,9,有3种涂法.第二部分4,7,8,当5,7同色时,4,8各有2种涂法,共4种涂法;当5,7异色时,7有2种涂法,4,8均只有1种涂法,故第二部分共4+2=6种涂法.第三部分与第二部分一样,共6种涂法.由分步乘法计数原理,可得共有3×6×6=108种涂法.