还剩19页未读,
继续阅读
2020版高考一轮复习生物通用版学案:第七单元第一讲基因突变和基因重组
展开
第一讲基因突变和基因重组
知识体系——定内容
核心素养——定能力
生命
观念
通过基因突变和基因重组的基本原理,建立起进化与适应的观点
科学
思维
通过基因突变与生物性状的关系、基因突变和基因重组的比较,提高归纳与概括能力
考点一 基因突变及其与性状的关系[重难深化类]
1.基因突变的实例——镰刀型细胞贫血症
2.基因突变的相关知识归纳
[基础自测]
1.判断下列叙述的正误
(1)A基因可突变为a基因,a基因还可能再突变为A基因(√)
(2)人类镰刀型细胞贫血症发生的根本原因是基因突变(√)
(3)基因突变通常发生在DNA→RNA的过程中(×)
(4)基因是具有遗传效应的DNA片段,HIV的遗传物质是RNA,不能发生基因突变(×)
(5)病毒、大肠杆菌及动植物都可以发生基因突变(√)
(6)基因突变产生的新基因不一定能传递给后代(√)
2.连线基因突变的特点
3.学透教材、理清原因、规范答题用语专练
下图为具有两对相对性状的某自花传粉的植物种群中甲植株(纯种)的一个A基因和乙植株(纯种)的一个B基因发生突变的过程(已知A基因和B基因是独立遗传的),请分析该过程,回答下列问题:
(1)上述两个基因发生突变的原因是________________________________________。
(2)乙植株发生基因突变后,该植株及其子一代均不能表现突变性状,其原因是________________________________________________________________________
________________________________________________________________________。
可用什么方法让其后代表现出突变性状?________________________________________________________________________
________________________________________________________________________。
答案:(1)一个碱基的替换(或碱基对改变或基因结构的改变)
(2)该突变为隐性突变,且基因突变发生在乙植株的体细胞中,不能通过有性生殖传递给子代 取发生基因突变部位的组织细胞,通过组织培养技术获得试管苗,让其自交,其子代即可表现出突变性状
1.基因突变的原因及与进化的关系
2.基因突变对蛋白质与性状的影响
(1)基因结构中碱基对的替换、增添、缺失对氨基酸序列的影响大小
类型
影响范围
对氨基酸序列的影响
替换
小
可改变1个氨基酸或不改变,也可能使翻译提前终止
增添
大
插入位置前不影响,影响插入位置后的序列
缺失
大
缺失位置前不影响,影响缺失位置后的序列
增添或缺失3个碱基
小
增添或缺失位置增加或缺失一个氨基酸对应的序列
(2)基因突变未引起生物性状改变的三大原因
①突变部位:基因突变发生在基因的非编码区。
②密码子简并性:若基因突变发生后,引起了mRNA上的密码子改变,但由于一种氨基酸可对应多种密码子,若新产生的密码子与原密码子对应的是同一种氨基酸,此时突变基因控制的性状不改变。
③隐性突变:若基因突变为隐性突变,如AA中其中一个A→a,此时性状也不改变。
[对点落实]
题点(一) 直接考查基因突变及其结果
1.镰刀型细胞贫血症病因的发现,是现代医学史上重要的事件。假设正常血红蛋白由H基因控制,突变后的异常血红蛋白由h基因控制。下列相关叙述正确的是( )
A.镰刀型细胞贫血症属于单基因遗传病,该病的症状可利用显微镜观察到
B.造成镰刀型细胞贫血症的根本原因是一个氨基酸发生了替换
C.h基因与H基因中的嘌呤碱基和嘧啶碱基的比值不同
D.利用光学显微镜可观测到基因H的长度较基因h长
解析:选A 镰刀型细胞贫血症患者的红细胞由中央微凹的圆饼状变成了弯曲的镰刀状,而红细胞呈红色,因此可通过显微镜观察红细胞的形态,从而确定某人是否是镰刀型细胞贫血症患者;造成镰刀型细胞贫血症的根本原因是控制血红蛋白分子中的基因的碱基序列发生了替换,从而引起所编码的蛋白质的改变;在双链DNA分子中,A=T,C=G,因此A+G=C+T, 即嘌呤碱基与嘧啶碱基的比值等于1,因此h基因与H基因中的嘌呤碱基和嘧啶碱基的比值相同,其比值均等于1;基因在光学显微镜下是观察不到的。
2.辐射易使人体细胞发生基因突变,从而对人体造成伤害。下列有关叙述错误的是( )
A.辐射引发的基因突变不一定会引起基因所携带遗传信息的改变
B.基因中一个碱基对发生替换,不一定会引起生物性状的改变
C.辐射所引发的变异可能为可遗传变异
D.基因突变不会造成某个基因的缺失
解析:选A 基因所携带的遗传信息是指碱基对的排列顺序,基因突变一定会引起碱基对排列顺序的改变;基因突变是指DNA分子中发生的碱基对的替换、增添和缺失,基因的缺失属于染色体变异。
[易错提醒]
基因突变的“一定”和“不一定”
(1)基因突变一定会引起基因结构的改变,即基因中碱基对排列顺序一定发生改变。
(2)基因突变不一定会引起生物性状的改变。
(3)基因突变不一定都产生等位基因。
病毒和原核细胞的基因组结构简单,基因数目少,而且一般是单个存在的,不存在等位基因。因此,真核生物基因突变可产生它的等位基因,而原核生物和病毒基因突变产生的是一个新基因。
(4)基因突变不一定都能遗传给后代。
①基因突变如果发生在有丝分裂过程中,一般不遗传,但有些植物可能通过无性生殖传递给后代。
②如果发生在减数分裂过程中,可以通过配子传递给后代。
题点(二) 考查基因突变与生物性状的关系
3.下图表示基因突变的一种情况,其中a、b是核酸链,c是肽链。下列说法正确的是( )
A.a→b→c表示基因的复制和转录
B.图中由于氨基酸没有改变,所以没有发生基因突变
C.图中氨基酸没有改变的原因是密码子具有简并性
D.除图示情况外,基因突变还包括染色体片段的缺失和增添
解析:选C 由图可知,a→b→c表示基因的转录和翻译;只要基因中碱基对发生改变,该基因就发生了基因突变;图中氨基酸没有发生改变,是由于密码子具有简并性;染色体片段缺失和增添属于染色体结构的变异。
4.(2018·烟台模拟)如图为人WNK4基因部分碱基序列及其编码蛋白质的部分氨基酸序列示意图。已知WNK4基因发生一种突变,导致1 169位赖氨酸变为谷氨酸。该基因发生的突变是( )
A.①处插入碱基对G—C
B.②处碱基对A—T替换为G—C
C.③处缺失碱基对A—T
D.④处碱基对G—C替换为A—T
解析:选B 首先由赖氨酸的密码子分析转录模板基因碱基为TTC,确定赖氨酸的密码子为AAG,①③处插入、缺失碱基对会使其后编码的氨基酸序列发生改变,④处碱基对替换后密码子为AAA,还是赖氨酸,②处碱基对替换后密码子变为GAG,对应谷氨酸。
5.(2016·天津高考)枯草杆菌野生型与某一突变型的差异见下表:
枯草杆菌
核糖体S12蛋白第55—58位的氨基酸序列
链霉素与核糖体的结合
在含链霉素培养基中的存活率(%)
野生型
…PKP…
能
0
突变型
…PKP…
不能
100
注:P:脯氨酸;K:赖氨酸;R:精氨酸。
下列叙述正确的是( )
A.S12蛋白结构改变使突变型具有链霉素抗性
B.链霉素通过与核糖体结合抑制其转录功能
C.突变型的产生是由于碱基对的缺失所致
D.链霉素可以诱发枯草杆菌产生相应的抗性突变
解析:选A 根据表中信息可知,链霉素通过与野生型枯草杆菌的核糖体结合,抑制翻译过程,进而起到杀菌作用;突变型枯草杆菌中核糖体S12蛋白氨基酸序列改变,使链霉素不能与核糖体结合,从而对链霉素产生抗性;该突变型与野生型相比只是一个氨基酸的不同,因此是碱基对的替换造成的,而非缺失;基因突变具有不定向性,链霉素只是对突变体起筛选作用。
[类题通法]
基因突变类型的“二确定”
(1)确定突变的形式:若只是一个氨基酸发生改变,则一般为碱基对的替换;若氨基酸序列发生大的变化,则一般为碱基对的增添或缺失。
(2)确定替换的碱基对:一般根据突变前后转录成mRNA的碱基序列判断,若只相差一个碱基,则该碱基所对应的基因中的碱基即为替换碱基。
显性突变与隐性突变的判断
(1)基因突变类型
(2)判断方法:
①选取突变体与其他已知未突变体杂交,据子代性状表现判断。
②让突变体自交,观察子代有无性状分离而判断。
[对点落实]
6.一对毛色正常鼠交配,产下多只鼠,其中一只雄鼠的毛色异常。分析认为,鼠毛色出现异常的原因有两种:一是基因突变的直接结果(控制毛色基因的显隐性未知,突变只涉及一个亲本常染色体上一对等位基因中的一个基因);二是隐性基因携带者之间交配的结果(只涉及亲本常染色体上一对等位基因)。假定这只雄鼠能正常生长发育,并具有生殖能力,后代可成活。为探究该鼠毛色异常的原因,用上述毛色异常的雄鼠分别与其同一窝的多只雌鼠交配,得到多窝子代。请预测结果并作出分析。
(1)如果每窝子代中毛色异常鼠与毛色正常鼠的比例均为________,则可推测毛色异常是____性基因突变为____性基因的直接结果,因为________________________________
________________________________________________________________________
________________________________________________________________________。
(2)如果不同窝子代出现两种情况,一种是同一窝子代中毛色异常鼠与毛色正常鼠的比例为________,另一种是同一窝子代全部表现为________鼠,则可推测毛色异常是隐性基因携带者之间交配的结果。
解析:如果毛色异常雄鼠是基因突变的结果(由于基因突变只涉及一个亲本常染色体上一对等位基因中的一个基因),则毛色正常鼠是隐性纯合子,毛色异常雄鼠是杂合子。将毛色异常雄鼠与其同窝的多只雌鼠交配(相当于测交),每窝子代中毛色异常鼠与毛色正常鼠的比例均为1∶1。如果毛色异常雄鼠是隐性基因携带者之间交配的结果,则毛色异常鼠是隐性纯合子,同窝的毛色正常雌鼠有一部分是杂合子,有一部分是显性纯合子,将毛色异常雄鼠与其同窝的多只雌鼠交配有两种情况:一种是同一窝子代中毛色异常鼠与毛色正常鼠的比例为1∶1,另一种是同一窝子代全部表现为毛色正常。
答案:(1)1∶1 隐 显 只有两个隐性纯合亲本中一个亲本的一个隐性基因突变为显性基因时,才能得到每窝毛色异常鼠与毛色正常鼠的比例均为1∶1的结果 (2)1∶1 毛色正常
7.芦笋是一种名贵蔬菜,是石刁柏的幼苗,为XY型性别决定。在某野生型窄叶种群中偶见几株阔叶芦笋幼苗,雌雄株都有。请回答下列问题:
(1)仅从性染色体分析,雄性石刁柏产生的精子类型将有________种,比例为________。
(2)现已证实阔叶为基因突变的结果,为确定是显性突变还是隐性突变,选用多株阔叶雌雄株进行交配,并统计后代表现型。
若______________________,则为________________。
若______________________,则为________________。
(3)已经知道阔叶是显性突变所致,由于雄株芦笋幼苗产量高于雌株,种植户希望在幼苗期就能区分雌雄,为了探求可行性,求助于科研工作者。技术人员先用多株野生型雌石刁柏与阔叶雄株杂交,你能否推断该技术人员做此实验的意图。__________________________________________。若杂交实验结果出现______________________________,种植户的心愿可以实现。
解析:(1)由于石刁柏为XY型性别决定,雄性植株的性染色体组成为XY。减数分裂产生的精子类型为2种,即X∶Y=1∶1。(2)选用多株阔叶突变型石刁柏雌雄株杂交,若杂交后代出现了野生型,则阔叶植株的出现为显性突变所致;若杂交后代仅出现突变型,则阔叶植株的出现为隐性突变所致。(3)选用多对野生型雌性植株与突变型雄性植株作为亲本杂交。若杂交后代野生型全为雄株,突变型全为雌株,则这对基因位于X染色体上,种植户的心愿可以实现;若杂交后代,雌、雄株均有野生型和突变型,则这对基因位于常染色体上,种植户的心愿不能实现。故该技术人员做此实验的意图是通过该杂交实验判断控制阔叶的基因是否在X染色体上。
答案:(1)2 1∶1 (2)后代出现窄叶 显性突变 后代都为阔叶 隐性突变 (3)通过该杂交实验判断控制阔叶的基因是否在X染色体上 后代雌株都为阔叶,雄株都为窄叶
考点二 基因重组[重难深化类]
1.概念
2.类型
类型
发生时期
实质
自由组合型
MⅠ后期
非同源染色体上的非等位基因自由组合
交叉互换型
MⅠ前期
同源染色体上的等位基因随非姐妹染色单体交换而交换
3.结果
产生新的基因型,导致重组性状出现。
4.意义
(1)是生物变异的来源之一;
(2)为生物进化提供材料;
(3)是形成生物多样性的重要原因之一。
[基础自测]
1.判断下列叙述的正误
(1)非同源染色体自由组合,导致在减数分裂过程中发生基因重组(√)
(2)同源染色体的非姐妹染色单体的交叉互换可引起基因重组(√)
(3)减数分裂四分体时期,姐妹染色单体的局部交换可导致基因重组(×)
(4)减数分裂过程中,非同源染色体的染色单体间发生片段交换不属于基因重组(√)
2.下列关于基因重组的叙述错误的是( )
A.基因重组通常发生在有性生殖过程中
B.基因重组产生的变异能为生物进化提供原材料
C.同源染色体上的基因可以发生重组
D.非同源染色体上的非等位基因不可以发生重组
解析:选D 同源染色体上的基因可以通过非姐妹染色单体的交叉互换发生重组,非同源染色体上的非等位基因可通过非同源染色体的自由组合发生重组。
3.下列图示过程存在基因重组的是( )
解析:选A A图所示的AaBb个体在进行减数分裂产生配子的过程中,会发生非同源染色体上非等位基因的自由组合,因此符合要求。B中表示的是雌雄配子的随机结合,不存在基因重组。C图表示减数第二次分裂的后期,该时期不存在基因重组。D图中只有一对等位基因,不会发生基因重组。
图示解读基因重组的类型
[典型图示]
类型1
类型2
类型3
[问题设计]
(1)上述类型1~3依次代表哪类基因重组?
提示:类型1为交叉互换型,类型2为自由组合型,类型3为基因工程。
(2)请指出三类基因重组发生的时期。
提示:类型1发生于MⅠ前期,类型2发生于MⅠ后期,类型3发生于基因工程操作过程中。
[对点落实]
1.(2018·海南高考)杂合体雌果蝇在形成配子时,同源染色体的非姐妹染色单体间的相应片段发生对等交换,导致新的配子类型出现,其原因是在配子形成过程中发生了( )
A.基因重组 B.染色体重复
C.染色体易位 D.染色体倒位
解析:选A 生物体在形成配子时,同源染色体的非姐妹染色单体间的相应片段发生对等交换,导致位于非姐妹染色单体上的等位基因进行了重组,其变异属于基因重组。
2.以下各项属于基因重组的是( )
A.基因型为Aa的个体自交,后代发生性状分离
B.雌、雄配子随机结合,产生不同类型的子代个体
C.YyRr个体自交后代出现不同于亲本的新类型
D.同卵双生姐妹间性状出现差异
解析:选C 基因重组的来源有减数第一次分裂后期非同源染色体上非等位基因的自由组合、减数分裂四分体时期同源染色体上非姐妹染色单体的交叉互换和基因工程中的DNA重组,YyRr个体自交后代出现不同于亲本的新类型是基因自由组合的结果,属于基因重组。
3.下列育种或生理过程中,没有发生基因重组的是( )
解析:选B 将抗虫基因导入棉花获得抗虫棉是通过基因工程实现的,基因工程所利用的原理是基因重组;花药离体培养获得单倍体植株过程中发生的是染色体数目变异;肺炎双球菌的转化属于基因重组;初级精母细胞经过减数第一次分裂形成次级精母细胞,在减数第一次分裂的四分体时期可能发生同源染色体的非姐妹染色单体间的交叉互换,在减数第一次分裂的后期会出现非同源染色体上的非等位基因的自由组合,都属于基因重组。
[易错提醒]
谨记基因重组的三点提醒
(1)多种精子和多种卵细胞之间有多种结合方式,导致后代性状多种多样,但不属于基因重组。
(2)具有一对等位基因的杂合子自交,后代发生性状分离,根本原因是等位基因的分离,而不是基因重组。
(3)“肺炎双球菌的转化实验”、DNA重组技术等属于广义的基因重组。
1.列表对比基因突变与基因重组
项目
基因突变
基因重组
发生时期
主要发生在:①有丝分裂间期
②MⅠ分裂前的间期
①MⅠ分裂后期
②MⅠ分裂前期
产生原因
物理、化学、生物因素引起
↓
碱基对的增添、缺失、替换
↓
导致基因结构的改变
交叉互换、自由组合
↓
基因重新组合
应用
诱变育种
杂交育种
联系
①都使生物产生可遗传的变异
②在长期进化过程中,通过基因突变产生新基因,为基因重组提供了大量可供自由组合的新基因,基因突变是基因重组的基础
③二者均产生新的基因型,可能产生新的表现型
2.姐妹染色单体上等位基因来源的判断
(1)据细胞分裂图判断
图示
解读
①如果是有丝分裂后期图像,两条子染色体上的两基因不同,则为基因突变的结果,如图甲
②如果是减数第二次分裂后期图像,两条子染色体(同白或同黑)上的两基因不同,则为基因突变的结果,如图乙
③如果是减数第二次分裂后期图像,两条子染色体(颜色不一致)上的两基因不同,则为交叉互换(基因重组)的结果,如图丙
(2)据细胞分裂方式判断
①如果是有丝分裂中染色单体上基因不同,则为基因突变的结果。
②如果是减数分裂过程中染色单体上基因不同,可能发生了基因突变或交叉互换。
(3)据亲子代基因型判断
①如果亲代基因型为BB或bb,则引起姐妹染色单体上B与b不同的原因是基因突变。
②如果亲代基因型为Bb,则引起姐妹染色单体上B与b不同的原因是基因突变或交叉互换。
[对点落实]
4.(2019·襄阳四校联考)下列有关基因突变和基因重组的叙述,正确的是( )
A.获得能产生人胰岛素的大肠杆菌的原理是基因突变
B.非同源染色体片段之间局部交换可导致基因重组
C.同源染色体上的基因也可能发生基因重组
D.发生在水稻根尖内的基因重组比发生在花药中的更容易遗传给后代
解析:选C 获得能产生人胰岛素的大肠杆菌的过程是基因工程,依据的原理是基因重组;非同源染色体片段之间局部交换属于染色体结构变异中的易位,不是基因重组;在减数第一次分裂的四分体时期,同源染色体上的非姐妹染色单体之间发生的交叉互换属于基因重组;发生在水稻花药中的变异比发生在根尖内的变异更容易遗传给后代,基因重组只发生在减数分裂过程中,水稻根尖内不能发生基因重组。
5.某动物的初级卵母细胞中,由一个着丝点相连的两条染色单体所携带的基因不完全相同,其原因一定不是( )
A.发生基因突变 B.发生过交叉互换
C.染色体结构变异 D.发生了自由组合
解析:选D 两条姐妹染色单体所携带的基因不完全相同的原因有三种可能:间期发生了基因突变、四分体时期发生过交叉互换或染色体结构变异。自由组合只发生在非同源染色体间。
6.下图是基因型为Aa的个体不同分裂时期的图像,根据图像判定每个细胞发生的变异类型,正确的是( )
A.①基因突变 ②基因突变 ③基因突变
B.①基因突变或基因重组 ②基因突变 ③基因重组
C.①基因突变 ②基因突变 ③基因突变或基因重组
D.①基因突变或基因重组 ②基因突变或基因重组
③基因重组
解析:选C 图中①②分别处于有丝分裂的中期和后期,A与a所在的DNA分子是由一个DNA分子经过复制而得到的,图中①②的变异只能来自基因突变;③处于MⅡ后期,A与a的不同可能来自基因突变或MⅠ前期的交叉互换(基因重组)。
课堂一刻钟
1.(2018·全国卷Ⅰ)某大肠杆菌能在基本培养基上生长,其突变体M和N均不能在基本培养基上生长,但M可在添加了氨基酸甲的基本培养基上生长,N可在添加了氨基酸乙的基本培养基上生长。将M和N在同时添加氨基酸甲和乙的基本培养基中混合培养一段时间后,再将菌体接种在基本培养基平板上,发现长出了大肠杆菌(X)的菌落。据此判断,下列说法不合理的是( )
A.突变体M催化合成氨基酸甲所需酶的活性丧失
B.突变体M和N都是由于基因发生突变而得来的
C.突变体M的RNA与突变体N混合培养能得到X
D.突变体M和N在混合培养期间发生了DNA转移
解题关键——灵活迁移
此选项考查角度要迁移交汇到肺炎双球菌转化实验的相关知识。由题干信息可确定突变体M与突变体N混合培养能得到X是由细菌间DNA的转移实现的。
解析:选C 突变体M不能在基本培养基上生长,但可在添加了氨基酸甲的培养基上生长,说明该突变体不能合成氨基酸甲,可能是催化合成氨基酸甲所需酶的活性丧失;大肠杆菌属于原核生物,自然条件下其变异类型只有基因突变,故其突变体是由于基因发生突变产生的;大肠杆菌的遗传物质是DNA,突变体M的RNA与突变体N混合培养不能得到X;突变体M和N在混合培养期间发生了DNA转移,使基因发生重组,产生了新的大肠杆菌X。
2.(2015·海南高考)关于等位基因B和b发生突变的叙述,错误的是( )
A.等位基因B和b都可以突变成为不同的等位基因
B.X射线的照射不会影响基因B和基因b的突变率
C.基因B中的碱基对G—C被碱基对A—T替换可导致基因突变
D.在基因b的ATGCC序列中插入碱基C可导致基因b的突变
命题探源——以“本”为本
此选项是对教材内容的变式考查,人教版必修②教材中明确说明X射线会诱发基因突变,因此只有对教材知识熟记才是解答此类题的根本。
解析:选B 基因突变具有不定向性,等位基因B和b都可以突变成为不同的等位基因;X射线的照射会影响基因B和基因b的突变率;基因B中的碱基对G—C被碱基对A—T替换可导致基因突变;在基因b的ATGCC序列中插入碱基C可导致基因b的突变。
3.(2015·江苏高考)经X射线照射的紫花香豌豆品种,其后代中出现了几株开白花植株,下列叙述错误的是( )
A.白花植株的出现是对环境主动适应的结果,有利于香豌豆的生存
B.X射线不仅可引起基因突变,也会引起染色体变异
C.通过杂交实验,可以确定是显性突变还是隐性突变
D.观察白花植株自交后代的性状,可确定是否是可遗传变异
易错探因——概念不清
变异是不定向的,不会发生主动适应环境的变异。考生常混淆变异、进化与适应的关系,认为生物的适应性是生物为适应环境而发生的定向变异,在解答此类问题时应建立适应是自然选择结果的观念。
解析:选A 变异具有不定向性,不存在主动适应;X射线可导致生物体发生基因突变或染色体变异;白花植株与原紫花品种杂交,若后代都是紫花植株,则白花植株是隐性突变的结果,若后代都是白花或既有白花又有紫花,则是显性突变的结果;白花植株的自交后代中若出现白花植株,则是可遗传变异,若全是紫花植株,则是不遗传变异。
4.(2014·浙江高考)除草剂敏感型的大豆经辐射获得抗性突变体,且敏感基因与抗性基因是1对等位基因。下列叙述正确的是( )
A.突变体若为1条染色体的片段缺失所致,则该抗性基因一定为隐性基因
B.突变体若为1对同源染色体相同位置的片段缺失所致,则再经诱变可恢复为敏感型
C.突变体若为基因突变所致,则再经诱变不可能恢复为敏感型
D.抗性基因若为敏感基因中的单个碱基对替换所致,则该抗性基因一定不能编码肽链
破题障碍——不明题意
造成部分学生答题障碍的原因是没有正确理解选项A所表述的生物学现象,即染色体片段缺失和基因突变一样都会改变生物性状,这种缺失往往是杂合子中的显性基因所在染色体片段缺失,即 。
解析:选A 假设敏感和抗性由基因A、a控制,若突变体为1条染色体的片段缺失所致,则原敏感型大豆基因型为Aa,缺失了A基因所在染色体片段导致抗性突变体出现,则抗性基因一定是隐性基因;突变体若为1对同源染色体相同位置的片段缺失所致,则该个体没有控制这对性状的基因,再经诱变也不可能恢复为敏感型;基因突变是可逆的,再经诱变可能恢复为敏感型;抗性基因若为敏感基因中的单个碱基对替换所致,则此情况属于基因突变,抗性基因可能编码肽链,也可能不编码肽链。
5.(2016·全国卷Ⅲ)基因突变和染色体变异是真核生物可遗传变异的两种来源。回答下列问题:
(1)基因突变和染色体变异所涉及到的碱基对的数目不同,前者所涉及的数目比后者______。
(2)在染色体数目变异中,既可发生以染色体组为单位的变异,也可发生以__________为单位的变异。
(3)基因突变既可由显性基因突变为隐性基因(隐性突变),也可由隐性基因突变为显性基因(显性突变)。若某种自花受粉植物的AA和aa植株分别发生隐性突变和显性突变,且在子一代中都得到了基因型为Aa的个体,则最早在子__________代中能观察到该显性突变的性状;最早在子________代中能观察到该隐性突变的性状;最早在子________代中能分离得到显性突变纯合体;最早在子________代中能分离得到隐性突变纯合体。
易错探因——原理不明
显性突变是aa突变为Aa;隐性突变是AA突变为Aa。对显性突变,只要个体具有显性基因,就会表现出显性性状,而对隐性性状,个体只有隐性纯合才会表现。明确这个原理(3)小题答案就呼之欲出了。
解析:(1)基因突变是指基因中碱基对的替换、增添和缺失;染色体变异包括染色体结构变异和染色体数目变异,通常染色体变异涉及许多基因的变化,故基因突变涉及的碱基对数目比染色体变异涉及的少。(2)在染色体数目变异中,既可发生以染色体组为单位的变异,也可发生以染色体为单位的变异。(3)显性突变是aa突变为Aa,在子一代中能观察到该显性突变的性状,子一代自交,子二代的基因型为AA、Aa和aa,子二代再自交,子三代不发生性状分离才算得到显性突变纯合体;隐性突变是AA突变为Aa,在子一代还是表现为显性性状,子一代自交,子二代的基因型为AA、Aa和aa,即能观察到该隐性突变的性状,也就是隐性突变纯合体。
答案:(1)少 (2)染色体 (3)一 二 三 二
[学情考情·了然于胸]
一、明考情·知能力——找准努力方向
考查知识
1.基因突变的类型、特点和意义,重点考查基因突变的原理和特点。
2.基因重组的概念、类型和意义,多考查基因突变与基因重组的关系。
考查能力
1.识记能力:主要考查对基因突变和基因重组类型和特点的识记能力。
2.推理能力:主要考查基因突变与生物性状的关系,根据性状确定变异类型。
二、记要点·背术语——汇总本节重点
1.可遗传的变异:基因突变、基因重组和染色体变异都是可遗传变异的来源,原因是三者细胞内遗传物质都发生了变化。
2.基因突变
(1)基因突变是由于DNA分子中发生碱基对的替换、增添和缺失,而引起的基因结构的改变。
(2)基因突变是新基因产生的途径,是生物变异的根本来源,是生物进化的原始材料。
3.基因重组
(1)基因重组是指在生物体进行有性生殖的过程中,控制不同性状的基因的重新组合。基因重组也是生物变异的来源之一,对生物的进化也具有重要的意义。
(2)基因重组主要来源于减数分裂形成配子时,非同源染色体上的非等位基因的自由组合及同源染色体上的非姐妹染色单体间的交叉互换。基因工程中的转基因操作也属于基因重组。
[课下达标检测]
一、选择题
1.下列有关基因突变和基因重组的叙述,正确的是( )
A.基因突变对生物个体是利多于弊
B.基因突变所产生的基因都可以遗传给后代
C.基因重组能产生新的基因
D.在自然条件下,基因重组是进行有性生殖的生物才具有的一种可遗传变异方式
解析:选D 基因突变具有多害少利的特点;发生在体细胞中的基因突变一般不能遗传给后代;只有基因突变才可以产生新的基因,基因重组可以产生新的基因型;在自然条件下,只有进行有性生殖的生物才会发生基因重组。
2.下列关于遗传变异的说法正确的是( )
A.任何生物在遗传过程中都可以发生基因突变、基因重组和染色体变异
B.花药离体培养过程中发生的变异有基因重组和染色体变异
C.基因突变可发生在细胞内不同DNA分子上体现了其随机性
D.基因重组和染色体变异都可导致基因在染色体上的排列顺序发生改变
解析:选C 原核生物和病毒不含染色体,不会发生染色体变异,基因重组一般发生在真核生物的有性生殖过程中;花药离体培养成单倍体幼苗过程中发生的是有丝分裂,该过程可以发生基因突变和染色体变异,但不会发生基因重组;细胞的不同DNA分子上的基因都可能发生突变,体现了基因突变的随机性;基因重组和染色体数目变异不会导致染色体上基因的排列顺序发生改变。
3.(2019·巢湖质检)如图是某二倍体动物细胞分裂示意图,其中字母表示基因。据图判断正确的是( )
A.此细胞含有4个染色体组,8个DNA分子
B.此动物体细胞基因型一定是AaBbCcDd
C.此细胞发生的一定是显性突变
D.此细胞既发生了基因突变又发生了基因重组
解析:选D 图示细胞有2个染色体组,8个DNA分子;细胞中正在发生同源染色体的分离,非同源染色体上非等位基因的自由组合,即基因重组;图中一条染色体的姐妹染色单体相同位置的基因为D和d,其对应的同源染色体上含有d、d,但不能确定是D突变成d,还是d突变成D,故可能发生的是隐性突变,也可能发生的是显性突变。
4.(2018·齐齐哈尔三模)诺贝尔生理学或医学奖获得者克隆了果蝇的period基因,并发现该基因编码的mRNA和蛋白质含量随昼夜节律而变化。下列相关叙述正确的是( )
A.period基因的基本组成单位是核糖核苷酸
B.period基因的表达不受环境的影响
C.period基因突变一定导致果蝇生物钟改变
D.period基因所在的DNA分子在细胞内复制时需要解旋酶和DNA聚合酶等
解析:选D period基因的基本组成单位是脱氧核苷酸;基因的表达受环境温度以及其他调节因子的影响;period基因突变对应蛋白质中氨基酸序列可能不变,或发生隐性突变,不一定导致果蝇生物钟改变;DNA分子在细胞内复制时需在解旋酶作用下解开双螺旋,在DNA聚合酶作用下延伸子链。
5.研究发现果蝇有一种储存及利用能量的基因(Indy基因),该基因变异后,可以对果蝇细胞级别的能量吸收进行限制,即让果蝇的细胞节食,进而使果蝇的寿命明显延长。而人类有着和果蝇类似的DNA序列。关于上述研究成果的叙述,正确的是( )
A.Indy基因变异后,果蝇体内细胞将不再衰老
B.对Indy基因进行诱变,一定可以使果蝇寿命明显延长
C.Indy基因的正常表达能限制果蝇细胞级别的能量吸收
D.人类有可能研制出一种既能延长寿命又能控制体重的药物
解析:选D 依据题干信息可知,该基因突变后,使细胞节食,进而延长果蝇寿命,但细胞仍会衰老;因基因突变具有不定向性,故对Indy基因进行诱导不一定形成使果蝇寿命延长的基因;该基因未变异前即正常表达时会使细胞正常储存和利用能量,基因变异后才会导致细胞节食;依据该基因变异后延长寿命的原理,人类可研制出延长寿命和控制体重的药物。
6.如图是三种因相应结构发生替换而产生变异的示意图,下列相关判断错误的是( )
A.镰刀型细胞贫血症的变异类型类似于过程①
B.过程②的变异类型为基因重组,发生在减数第一次分裂前期
C.过程③能在光学显微镜下观察到
D.杂交育种的原理是过程③
解析:选D 镰刀型细胞贫血症的患病原因是基因突变,与过程①类似;过程②表示同源染色体中非姐妹染色单体之间的交叉互换,变异类型属于基因重组,发生在减数第一次分裂前期;过程③表示染色体的某一片段移接到另一条非同源染色体上而引起的变异,即易位,这属于染色体结构变异,在光学显微镜下能够观察到;杂交育种的原理是基因重组,而③表示染色体变异。
7.周期性共济失调是一种编码细胞膜上钙离子通道蛋白基因发生突变导致的遗传病,该突变基因转录形成的mRNA长度不变,但合成的多肽链缩短,使通道蛋白结构异常而致病。下列有关叙述,正确的是( )
A.翻译的多肽链缩短说明编码基因一定发生了碱基对的缺失
B.该病例说明了基因能通过控制酶的合成来控制生物的性状
C.突变导致基因转录和翻译过程中碱基互补配对原则发生改变
D.患该病的原因可能是基因中碱基对的替换而导致mRNA上终止密码子提前出现
解析:选D 正常基因和突变基因转录出的mRNA长度相同,但致病基因控制合成的异常多肽链较正常多肽链短,原因可能是基因中碱基对发生替换,使对应的密码子变为终止密码子,导致mRNA上终止密码子提前出现;周期性共济失调是一种编码细胞膜上钙离子通道蛋白基因发生突变导致的遗传病,说明基因能通过控制蛋白质的结构直接控制生物体的性状;突变不会导致基因转录和翻译过程中碱基互补配对原则改变。
8.已知与人体血红蛋白合成有关的一对等位基因是HbA和HbS,只有纯合子(HbSHbS)患镰刀型细胞贫血症,患者大多于幼年死亡,只含一个致病基因的个体不表现为镰刀型细胞贫血症,并对疟疾具有较强的抵抗力。以下说法错误的是( )
A.基因HbS是基因突变的结果,可以用显微镜检测镰刀型细胞贫血症
B.纯合子(HbAHbA)具有较强的抗疟疾能力
C.基因HbA和HbS不可能存在于一个染色体组中
D.该现象说明基因突变改变了生物的表现型
解析:选B 基因HbS是正常基因HbA发生基因突变的结果,突变后形成的镰刀型红细胞可以用显微镜观察到;由题干信息不能得出纯合子(HbAHbA)具有较强的抗疟疾能力;HbA和HbS是一对等位基因,位于一对同源染色体的相同位置上,而同源染色体不会存在于一个染色体组中,因此基因HbA和HbS不可能存在于一个染色体组中;纯合子(HbSHbS)患病,杂合子(HbAHbS)不患病且抗疟疾能力增强,以上现象说明基因突变改变了生物的表现型。
9.人体甲状腺滤泡上皮细胞具有很强的摄碘能力。临床上常用小剂量的放射性同位素131I治疗某些甲状腺疾病。但大剂量的131I对人体会产生有害影响。积聚在细胞内的131I可能直接( )
A.插入DNA分子引起插入点后的碱基序列改变
B.替换DNA分子中的某一碱基引起基因突变
C.造成染色体断裂、缺失或易位等染色体结构变异
D.诱发甲状腺滤泡上皮细胞基因突变并遗传给下一代
解析:选C 131I不能插入DNA分子中,也不能替换DNA分子中的碱基;大剂量的放射性同位素131I会导致基因突变或染色体结构的变异;上皮细胞属于体细胞,发生基因突变后不会遗传给下一代。
10.某二倍体植物染色体上的基因E2发生了基因突变,形成了它的等位基因E1,导致所编码的蛋白质中一个氨基酸被替换,下列叙述正确的是( )
A.基因E2形成E1时,该基因在染色体上的位置和其上的遗传信息会发生改变
B.基因E2突变形成E1,该变化是由基因中碱基对的替换、增添和缺失导致的
C.基因E2形成E1时,一定会使代谢加快,细胞中含糖量增加,采摘的果实更加香甜
D.在自然选择作用下,该种群基因库中基因E2的基因频率会发生改变
解析:选D 基因E2突变形成E1时,其上的遗传信息会发生改变,但在染色体上的位置不变;蛋白质中只有一个氨基酸被替换,这说明该突变是由基因中碱基对的替换造成的,碱基对的增添和缺失会造成氨基酸数目和种类的改变;基因突变具有不定向性和多害少利性,基因E2突变形成E1后,植株代谢不一定加快,含糖量不一定增加。
11.最新研究发现白癜风致病根源与人体血清中的酪氨酸酶活性减小或丧失有关,当编码酪氨酸酶的基因中某些碱基改变时,表达产物将变为酶A,下表显示酶A与酪氨酸酶相比,可能出现的四种情况。相关叙述正确的是( )
比较指标
①
②
③
④
患者白癜风面积
30%
20%
10%
5%
酶A氨基酸数目/酪氨酸酶氨基酸数目
1.1
1
1
0.9
A.①④中碱基的改变是染色体结构变异导致的
B.②③中氨基酸数目没有改变,对应的mRNA中碱基排列顺序也不会改变
C.①使tRNA种类增多,④使tRNA数量减少,②③中tRNA的数量没有变化
D.①④可能导致控制酪氨酸酶合成的mRNA中的终止密码子位置改变
解析:选D 根据题干“编码酪氨酸酶的基因中某些碱基改变”,说明只是该基因内部结构改变,整个DNA分子上基因的数量和位置都没有改变,所以属于基因突变,不属于染色体结构变异;编码酪氨酸酶的基因中某些碱基改变,则转录产生的mRNA中碱基排列顺序必然改变;同一tRNA可多次使用,其数量不会随基因中碱基的改变而改变;根据表中①④数据分析,突变后合成的蛋白质中氨基酸数目改变,说明合成酪氨酸酶的mRNA中的终止密码子位置可能发生了改变。
12.(2019·天津模拟)下列关于生物变异、育种的叙述,正确的是( )
A.育种可以培育出新品种,也可能得到新物种
B.无子果实的获得均要用到秋水仙素,变异类型为染色体的数目变异
C.中国荷斯坦牛、青霉素高产菌株和转基因抗虫棉的培育依据的原理相同
D.联会时的交叉互换实现了非同源染色体上非等位基因的重新组合
解析:选A 育种可以培育出新品种,也可能得到新物种,例如由二倍体生物培育而成的四倍体生物,与原二倍体生物存在生殖隔离,是一个新物种;无子果实的获得,有的要用到秋水仙素(如三倍体无子西瓜),变异类型为染色体的数目变异,有的是用一定浓度的生长素涂在没有受粉的雌蕊柱头上得到的(如无子番茄);中国荷斯坦牛的培育采用了试管动物技术,属于有性生殖的范畴,其培育原理与转基因抗虫棉的培育依据的原理相同,都是基因重组,青霉素高产菌株的培育依据的原理是基因突变;联会时的同源染色体上的等位基因随非姐妹染色单体的交叉互换实现了基因的重新组合。
二、非选择题
13.(2019·南昌模拟)如图表示细胞中出现的异常mRNA被SURF复合物识别而发生降解的过程,该过程被称为NMD作用,能阻止有害异常蛋白的表达。NMD作用常见于人类遗传病中,如我国南方地区高发的地中海贫血症(AUG、UAG分别为起始和终止密码子)。
(1)图中异常mRNA与正常mRNA长度相同,推测终止密码子提前出现的原因是基因中发生了________。
(2)异常mRNA来自突变基因的________,其降解产物为____________。如果异常mRNA不发生降解,细胞内就会产生肽链较________的异常蛋白。
(3)常染色体上的正常β珠蛋白基因(A+)既有显性突变(A),又有隐性突变(a),两者均可导致地中海贫血症。据下表分析:
基因型
aa
A+A
A+a
表现型
重度贫血
中度贫血
轻度贫血
原因分析
能否发生NMD作用
能
②
能
β珠蛋白合成情况
①
合成少量
合成少量
表格中①②处分别为:①________;②________;除表中所列外,贫血患者的基因型还有________。
解析:(1)图中异常mRNA与正常mRNA长度相同,推测终止密码子提前出现的原因是基因中发生了碱基对的替换。(2)突变后的异常基因通过转录过程形成异常mRNA,mRNA的基本组成单位是核糖核苷酸,因此mRNA降解产物是核糖核苷酸;分析题图可知,异常mRNA中终止密码子比正常mRNA中的终止密码子提前出现,因此如果异常mRNA不发生降解,细胞内翻译过程会产生肽链较短的异常蛋白质。(3)分析表格中的信息可知,基因型为A+A和A+a的个体分别表现为中度贫血和轻度贫血,合成的β珠蛋白少,基因型为aa的个体表现为重度贫血,不能合成β珠蛋白;根据题干信息可知,基因的显隐性关系为:A>A+>a;A+a的个体能发生NMD作用,体内有正常基因的表达产物,所以表现为轻度贫血;基因型为aa的个体能发生NMD作用,无β珠蛋白合成,表现为重度贫血;基因型为A+A的个体表现为中度贫血,说明其异常β珠蛋白基因的表达未能被抑制,因此不能发生NMD作用,导致异常蛋白合成。由题意可知,显性突变(A)和隐性突变(a)均可导致地中海贫血症,因此除表中所列外,贫血患者的基因型还有AA、Aa。
答案:(1)碱基替换 (2)转录 核糖核苷酸 短 (3)无合成 不能 AA、Aa
14.在一个鼠(2N)的种群中,鼠的毛色有野生型黄色(A)、突变型灰色(a1)和突变型黑色(a2)三种表现型,基因A对a1和a2为显性,a1对a2为显性,三种基因的形成关系如图所示。请回答:
(1)由图可以看出DNA分子中碱基对的____________能导致基因突变。
(2)基因a2控制的蛋白质肽链长度明显变短,这是由于基因突变导致__________________,在细胞质中参与该蛋白质合成的核酸有________________。
(3)杂合灰色鼠精巢中的一个细胞中含有2个a2基因,原因最可能是__________________,此时该细胞可能含有________个染色体组。
(4)有些杂合黄色小鼠的皮毛上出现灰色斑点,请从可遗传变异的角度对这一现象做出合理解释。______________________________________________________________
________________________________________________________________________。
解析:(1)分析图示可知:a1基因的产生是由于A基因中的碱基对C∥G被T∥A替换,a2基因的产生是由于A基因中的碱基对T∥A的缺失,因此DNA分子中碱基对的缺失、替换能导致基因突变。(2)基因a2控制的蛋白质肽链长度明显变短,这是由于基因突变导致翻译提前终止,在细胞质中参与该蛋白质合成的核酸种类有tRNA、mRNA、rRNA。(3)杂合灰色鼠精巢中的一个细胞中含有2个a2基因,其原因最可能是DNA发生了复制(染色体复制)。若该细胞为处于减数第二次分裂前期或中期的次级精母细胞,则含有1个染色体组;若该细胞为处于有丝分裂前期或中期的精原细胞,或者是处于减数第二次分裂后期的次级精母细胞,则含有2个染色体组;若该细胞为处于有丝分裂后期的精原细胞,则含有4个染色体组;综上分析,该细胞可能含有1或2或4个染色体组。(4)A基因控制黄色、a1基因控制灰色,且A对a1为显性。有些杂合黄色小鼠的皮毛上出现灰色斑点,说明这些杂合黄色小鼠的基因型为Aa1,灰色斑点的出现是由于部分细胞中A基因突变成了a1,表现为灰色(或部分细胞带有A基因的染色体片段缺失,使a1基因表达的性状表现了出来)。
答案:(1)缺失、替换 (2)翻译提前终止 tRNA、mRNA、rRNA (3)DNA发生了复制(染色体复制) 1或2或4 (4)部分细胞A基因突变成了a1,表现为灰色(或部分细胞带有A基因的染色体片段缺失,使a1基因表达的性状表现了出来)
15.科研人员利用化学诱变剂EMS诱发水稻D11基因突变,选育出一种纯合矮秆水稻突变植株(甲)。将该矮秆水稻与正常水稻杂交,F2表现型及比例为正常植株∶矮秆植株=3∶1。D11基因的作用如下图所示。请分析并回答问题:
(1)BR与BR受体结合后,可促进水稻细胞伸长,这体现了细胞膜的____________功能。
(2)EMS诱发D11基因发生________(填“显性”或“隐性”)突变,从而________(填“促进”或“抑制”)CYP724B1酶的合成,水稻植株内BR含量________,导致产生矮秆性状。
(3)研究发现,EMS也会诱发D61基因发生突变使BR受体合成受阻。由此说明基因突变具有________特点。
(4)科研人员利用EMS又选育出若干株纯合矮秆水稻突变植株(乙)。现将甲、乙水稻植株杂交,以判断乙水稻矮秆性状的产生原因是与甲水稻相同(仅由D11基因突变引起的),还是仅由D61基因发生显性或隐性突变引起的(其他情况不考虑)。
①若杂交子代皆表现为正常植株,则表明乙水稻矮秆性状是由D61基因发生________(填“显性”或“隐性”)突变引起的。
②若杂交子代出现矮秆植株,尚不能确定乙水稻矮秆性状的产生原因。请进一步设计操作较简便的实验方案,预期实验结果及结论。
实验方案:杂交子代矮秆植株苗期喷施BR,分析统计植株的表现型及比例。
预期实验结果及结论:若植株全为________植株,则乙水稻矮秆性状的产生原因是与甲水稻相同;若植株全为________植株,则乙水稻矮秆性状的产生是仅由D61基因发生显性突变引起的。
解析:(1)BR与BR受体结合后,可促进水稻细胞伸长,这体现了细胞膜的信息交流功能。(2)F2表现型及比例为正常植株∶矮秆植株=3∶1,说明正常相对于矮秆为显性性状,由此可见EMS诱发D11基因发生了隐性突变;D11基因能控制合成CYP724B1酶,EMS诱发D11基因发生基因突变后会抑制CYP724B1酶的合成,使水稻植株内BR含量减少,进而产生矮秆性状。(3)EMS既会诱发D11基因发生基因突变,也会诱发D61基因发生突变,可见基因突变具有随机性特点。 (4)纯合矮秆水稻突变植株(甲)是D11基因发生隐性突变形成的,现将甲、乙水稻植株杂交,以判断乙水稻矮秆性状的产生原因是与甲水稻相同(仅由D11基因突变引起的),还是仅由D61基因发生显性或隐性突变引起的。①若杂交子代皆表现为正常植株,说明D11基因能控制合成CYP724B1酶,进而形成BR,且BR的受体正常,这表明乙水稻矮秆性状是由D61基因发生隐性突变引起的。②若杂交子代皆表现为矮秆植株,乙水稻矮秆性状的产生原因可能是与甲水稻相同(仅由D11基因突变引起的),也可能是仅由D61基因发生显性突变引起的,需要进行进一步实验来探究。若乙水稻矮秆性状的产生原因是与甲水稻相同(仅由D11基因突变引起的),则其矮秆性状形成的原因是不能合成CYP724B1酶,导致BR不能形成所致,这可通过给杂交子代矮秆植株苗期喷施BR,分析统计植株的表现型及比例来判断,若植株全为正常植株,则乙水稻矮秆性状的产生原因与甲水稻相同。
答案:(1)信息交流(或信息传递) (2)隐性 抑制 减少 (3)随机性 (4)①隐性 ②正常 矮秆
知识体系——定内容
核心素养——定能力
生命
观念
通过基因突变和基因重组的基本原理,建立起进化与适应的观点
科学
思维
通过基因突变与生物性状的关系、基因突变和基因重组的比较,提高归纳与概括能力
考点一 基因突变及其与性状的关系[重难深化类]
1.基因突变的实例——镰刀型细胞贫血症
2.基因突变的相关知识归纳
[基础自测]
1.判断下列叙述的正误
(1)A基因可突变为a基因,a基因还可能再突变为A基因(√)
(2)人类镰刀型细胞贫血症发生的根本原因是基因突变(√)
(3)基因突变通常发生在DNA→RNA的过程中(×)
(4)基因是具有遗传效应的DNA片段,HIV的遗传物质是RNA,不能发生基因突变(×)
(5)病毒、大肠杆菌及动植物都可以发生基因突变(√)
(6)基因突变产生的新基因不一定能传递给后代(√)
2.连线基因突变的特点
3.学透教材、理清原因、规范答题用语专练
下图为具有两对相对性状的某自花传粉的植物种群中甲植株(纯种)的一个A基因和乙植株(纯种)的一个B基因发生突变的过程(已知A基因和B基因是独立遗传的),请分析该过程,回答下列问题:
(1)上述两个基因发生突变的原因是________________________________________。
(2)乙植株发生基因突变后,该植株及其子一代均不能表现突变性状,其原因是________________________________________________________________________
________________________________________________________________________。
可用什么方法让其后代表现出突变性状?________________________________________________________________________
________________________________________________________________________。
答案:(1)一个碱基的替换(或碱基对改变或基因结构的改变)
(2)该突变为隐性突变,且基因突变发生在乙植株的体细胞中,不能通过有性生殖传递给子代 取发生基因突变部位的组织细胞,通过组织培养技术获得试管苗,让其自交,其子代即可表现出突变性状
1.基因突变的原因及与进化的关系
2.基因突变对蛋白质与性状的影响
(1)基因结构中碱基对的替换、增添、缺失对氨基酸序列的影响大小
类型
影响范围
对氨基酸序列的影响
替换
小
可改变1个氨基酸或不改变,也可能使翻译提前终止
增添
大
插入位置前不影响,影响插入位置后的序列
缺失
大
缺失位置前不影响,影响缺失位置后的序列
增添或缺失3个碱基
小
增添或缺失位置增加或缺失一个氨基酸对应的序列
(2)基因突变未引起生物性状改变的三大原因
①突变部位:基因突变发生在基因的非编码区。
②密码子简并性:若基因突变发生后,引起了mRNA上的密码子改变,但由于一种氨基酸可对应多种密码子,若新产生的密码子与原密码子对应的是同一种氨基酸,此时突变基因控制的性状不改变。
③隐性突变:若基因突变为隐性突变,如AA中其中一个A→a,此时性状也不改变。
[对点落实]
题点(一) 直接考查基因突变及其结果
1.镰刀型细胞贫血症病因的发现,是现代医学史上重要的事件。假设正常血红蛋白由H基因控制,突变后的异常血红蛋白由h基因控制。下列相关叙述正确的是( )
A.镰刀型细胞贫血症属于单基因遗传病,该病的症状可利用显微镜观察到
B.造成镰刀型细胞贫血症的根本原因是一个氨基酸发生了替换
C.h基因与H基因中的嘌呤碱基和嘧啶碱基的比值不同
D.利用光学显微镜可观测到基因H的长度较基因h长
解析:选A 镰刀型细胞贫血症患者的红细胞由中央微凹的圆饼状变成了弯曲的镰刀状,而红细胞呈红色,因此可通过显微镜观察红细胞的形态,从而确定某人是否是镰刀型细胞贫血症患者;造成镰刀型细胞贫血症的根本原因是控制血红蛋白分子中的基因的碱基序列发生了替换,从而引起所编码的蛋白质的改变;在双链DNA分子中,A=T,C=G,因此A+G=C+T, 即嘌呤碱基与嘧啶碱基的比值等于1,因此h基因与H基因中的嘌呤碱基和嘧啶碱基的比值相同,其比值均等于1;基因在光学显微镜下是观察不到的。
2.辐射易使人体细胞发生基因突变,从而对人体造成伤害。下列有关叙述错误的是( )
A.辐射引发的基因突变不一定会引起基因所携带遗传信息的改变
B.基因中一个碱基对发生替换,不一定会引起生物性状的改变
C.辐射所引发的变异可能为可遗传变异
D.基因突变不会造成某个基因的缺失
解析:选A 基因所携带的遗传信息是指碱基对的排列顺序,基因突变一定会引起碱基对排列顺序的改变;基因突变是指DNA分子中发生的碱基对的替换、增添和缺失,基因的缺失属于染色体变异。
[易错提醒]
基因突变的“一定”和“不一定”
(1)基因突变一定会引起基因结构的改变,即基因中碱基对排列顺序一定发生改变。
(2)基因突变不一定会引起生物性状的改变。
(3)基因突变不一定都产生等位基因。
病毒和原核细胞的基因组结构简单,基因数目少,而且一般是单个存在的,不存在等位基因。因此,真核生物基因突变可产生它的等位基因,而原核生物和病毒基因突变产生的是一个新基因。
(4)基因突变不一定都能遗传给后代。
①基因突变如果发生在有丝分裂过程中,一般不遗传,但有些植物可能通过无性生殖传递给后代。
②如果发生在减数分裂过程中,可以通过配子传递给后代。
题点(二) 考查基因突变与生物性状的关系
3.下图表示基因突变的一种情况,其中a、b是核酸链,c是肽链。下列说法正确的是( )
A.a→b→c表示基因的复制和转录
B.图中由于氨基酸没有改变,所以没有发生基因突变
C.图中氨基酸没有改变的原因是密码子具有简并性
D.除图示情况外,基因突变还包括染色体片段的缺失和增添
解析:选C 由图可知,a→b→c表示基因的转录和翻译;只要基因中碱基对发生改变,该基因就发生了基因突变;图中氨基酸没有发生改变,是由于密码子具有简并性;染色体片段缺失和增添属于染色体结构的变异。
4.(2018·烟台模拟)如图为人WNK4基因部分碱基序列及其编码蛋白质的部分氨基酸序列示意图。已知WNK4基因发生一种突变,导致1 169位赖氨酸变为谷氨酸。该基因发生的突变是( )
A.①处插入碱基对G—C
B.②处碱基对A—T替换为G—C
C.③处缺失碱基对A—T
D.④处碱基对G—C替换为A—T
解析:选B 首先由赖氨酸的密码子分析转录模板基因碱基为TTC,确定赖氨酸的密码子为AAG,①③处插入、缺失碱基对会使其后编码的氨基酸序列发生改变,④处碱基对替换后密码子为AAA,还是赖氨酸,②处碱基对替换后密码子变为GAG,对应谷氨酸。
5.(2016·天津高考)枯草杆菌野生型与某一突变型的差异见下表:
枯草杆菌
核糖体S12蛋白第55—58位的氨基酸序列
链霉素与核糖体的结合
在含链霉素培养基中的存活率(%)
野生型
…PKP…
能
0
突变型
…PKP…
不能
100
注:P:脯氨酸;K:赖氨酸;R:精氨酸。
下列叙述正确的是( )
A.S12蛋白结构改变使突变型具有链霉素抗性
B.链霉素通过与核糖体结合抑制其转录功能
C.突变型的产生是由于碱基对的缺失所致
D.链霉素可以诱发枯草杆菌产生相应的抗性突变
解析:选A 根据表中信息可知,链霉素通过与野生型枯草杆菌的核糖体结合,抑制翻译过程,进而起到杀菌作用;突变型枯草杆菌中核糖体S12蛋白氨基酸序列改变,使链霉素不能与核糖体结合,从而对链霉素产生抗性;该突变型与野生型相比只是一个氨基酸的不同,因此是碱基对的替换造成的,而非缺失;基因突变具有不定向性,链霉素只是对突变体起筛选作用。
[类题通法]
基因突变类型的“二确定”
(1)确定突变的形式:若只是一个氨基酸发生改变,则一般为碱基对的替换;若氨基酸序列发生大的变化,则一般为碱基对的增添或缺失。
(2)确定替换的碱基对:一般根据突变前后转录成mRNA的碱基序列判断,若只相差一个碱基,则该碱基所对应的基因中的碱基即为替换碱基。
显性突变与隐性突变的判断
(1)基因突变类型
(2)判断方法:
①选取突变体与其他已知未突变体杂交,据子代性状表现判断。
②让突变体自交,观察子代有无性状分离而判断。
[对点落实]
6.一对毛色正常鼠交配,产下多只鼠,其中一只雄鼠的毛色异常。分析认为,鼠毛色出现异常的原因有两种:一是基因突变的直接结果(控制毛色基因的显隐性未知,突变只涉及一个亲本常染色体上一对等位基因中的一个基因);二是隐性基因携带者之间交配的结果(只涉及亲本常染色体上一对等位基因)。假定这只雄鼠能正常生长发育,并具有生殖能力,后代可成活。为探究该鼠毛色异常的原因,用上述毛色异常的雄鼠分别与其同一窝的多只雌鼠交配,得到多窝子代。请预测结果并作出分析。
(1)如果每窝子代中毛色异常鼠与毛色正常鼠的比例均为________,则可推测毛色异常是____性基因突变为____性基因的直接结果,因为________________________________
________________________________________________________________________
________________________________________________________________________。
(2)如果不同窝子代出现两种情况,一种是同一窝子代中毛色异常鼠与毛色正常鼠的比例为________,另一种是同一窝子代全部表现为________鼠,则可推测毛色异常是隐性基因携带者之间交配的结果。
解析:如果毛色异常雄鼠是基因突变的结果(由于基因突变只涉及一个亲本常染色体上一对等位基因中的一个基因),则毛色正常鼠是隐性纯合子,毛色异常雄鼠是杂合子。将毛色异常雄鼠与其同窝的多只雌鼠交配(相当于测交),每窝子代中毛色异常鼠与毛色正常鼠的比例均为1∶1。如果毛色异常雄鼠是隐性基因携带者之间交配的结果,则毛色异常鼠是隐性纯合子,同窝的毛色正常雌鼠有一部分是杂合子,有一部分是显性纯合子,将毛色异常雄鼠与其同窝的多只雌鼠交配有两种情况:一种是同一窝子代中毛色异常鼠与毛色正常鼠的比例为1∶1,另一种是同一窝子代全部表现为毛色正常。
答案:(1)1∶1 隐 显 只有两个隐性纯合亲本中一个亲本的一个隐性基因突变为显性基因时,才能得到每窝毛色异常鼠与毛色正常鼠的比例均为1∶1的结果 (2)1∶1 毛色正常
7.芦笋是一种名贵蔬菜,是石刁柏的幼苗,为XY型性别决定。在某野生型窄叶种群中偶见几株阔叶芦笋幼苗,雌雄株都有。请回答下列问题:
(1)仅从性染色体分析,雄性石刁柏产生的精子类型将有________种,比例为________。
(2)现已证实阔叶为基因突变的结果,为确定是显性突变还是隐性突变,选用多株阔叶雌雄株进行交配,并统计后代表现型。
若______________________,则为________________。
若______________________,则为________________。
(3)已经知道阔叶是显性突变所致,由于雄株芦笋幼苗产量高于雌株,种植户希望在幼苗期就能区分雌雄,为了探求可行性,求助于科研工作者。技术人员先用多株野生型雌石刁柏与阔叶雄株杂交,你能否推断该技术人员做此实验的意图。__________________________________________。若杂交实验结果出现______________________________,种植户的心愿可以实现。
解析:(1)由于石刁柏为XY型性别决定,雄性植株的性染色体组成为XY。减数分裂产生的精子类型为2种,即X∶Y=1∶1。(2)选用多株阔叶突变型石刁柏雌雄株杂交,若杂交后代出现了野生型,则阔叶植株的出现为显性突变所致;若杂交后代仅出现突变型,则阔叶植株的出现为隐性突变所致。(3)选用多对野生型雌性植株与突变型雄性植株作为亲本杂交。若杂交后代野生型全为雄株,突变型全为雌株,则这对基因位于X染色体上,种植户的心愿可以实现;若杂交后代,雌、雄株均有野生型和突变型,则这对基因位于常染色体上,种植户的心愿不能实现。故该技术人员做此实验的意图是通过该杂交实验判断控制阔叶的基因是否在X染色体上。
答案:(1)2 1∶1 (2)后代出现窄叶 显性突变 后代都为阔叶 隐性突变 (3)通过该杂交实验判断控制阔叶的基因是否在X染色体上 后代雌株都为阔叶,雄株都为窄叶
考点二 基因重组[重难深化类]
1.概念
2.类型
类型
发生时期
实质
自由组合型
MⅠ后期
非同源染色体上的非等位基因自由组合
交叉互换型
MⅠ前期
同源染色体上的等位基因随非姐妹染色单体交换而交换
3.结果
产生新的基因型,导致重组性状出现。
4.意义
(1)是生物变异的来源之一;
(2)为生物进化提供材料;
(3)是形成生物多样性的重要原因之一。
[基础自测]
1.判断下列叙述的正误
(1)非同源染色体自由组合,导致在减数分裂过程中发生基因重组(√)
(2)同源染色体的非姐妹染色单体的交叉互换可引起基因重组(√)
(3)减数分裂四分体时期,姐妹染色单体的局部交换可导致基因重组(×)
(4)减数分裂过程中,非同源染色体的染色单体间发生片段交换不属于基因重组(√)
2.下列关于基因重组的叙述错误的是( )
A.基因重组通常发生在有性生殖过程中
B.基因重组产生的变异能为生物进化提供原材料
C.同源染色体上的基因可以发生重组
D.非同源染色体上的非等位基因不可以发生重组
解析:选D 同源染色体上的基因可以通过非姐妹染色单体的交叉互换发生重组,非同源染色体上的非等位基因可通过非同源染色体的自由组合发生重组。
3.下列图示过程存在基因重组的是( )
解析:选A A图所示的AaBb个体在进行减数分裂产生配子的过程中,会发生非同源染色体上非等位基因的自由组合,因此符合要求。B中表示的是雌雄配子的随机结合,不存在基因重组。C图表示减数第二次分裂的后期,该时期不存在基因重组。D图中只有一对等位基因,不会发生基因重组。
图示解读基因重组的类型
[典型图示]
类型1
类型2
类型3
[问题设计]
(1)上述类型1~3依次代表哪类基因重组?
提示:类型1为交叉互换型,类型2为自由组合型,类型3为基因工程。
(2)请指出三类基因重组发生的时期。
提示:类型1发生于MⅠ前期,类型2发生于MⅠ后期,类型3发生于基因工程操作过程中。
[对点落实]
1.(2018·海南高考)杂合体雌果蝇在形成配子时,同源染色体的非姐妹染色单体间的相应片段发生对等交换,导致新的配子类型出现,其原因是在配子形成过程中发生了( )
A.基因重组 B.染色体重复
C.染色体易位 D.染色体倒位
解析:选A 生物体在形成配子时,同源染色体的非姐妹染色单体间的相应片段发生对等交换,导致位于非姐妹染色单体上的等位基因进行了重组,其变异属于基因重组。
2.以下各项属于基因重组的是( )
A.基因型为Aa的个体自交,后代发生性状分离
B.雌、雄配子随机结合,产生不同类型的子代个体
C.YyRr个体自交后代出现不同于亲本的新类型
D.同卵双生姐妹间性状出现差异
解析:选C 基因重组的来源有减数第一次分裂后期非同源染色体上非等位基因的自由组合、减数分裂四分体时期同源染色体上非姐妹染色单体的交叉互换和基因工程中的DNA重组,YyRr个体自交后代出现不同于亲本的新类型是基因自由组合的结果,属于基因重组。
3.下列育种或生理过程中,没有发生基因重组的是( )
解析:选B 将抗虫基因导入棉花获得抗虫棉是通过基因工程实现的,基因工程所利用的原理是基因重组;花药离体培养获得单倍体植株过程中发生的是染色体数目变异;肺炎双球菌的转化属于基因重组;初级精母细胞经过减数第一次分裂形成次级精母细胞,在减数第一次分裂的四分体时期可能发生同源染色体的非姐妹染色单体间的交叉互换,在减数第一次分裂的后期会出现非同源染色体上的非等位基因的自由组合,都属于基因重组。
[易错提醒]
谨记基因重组的三点提醒
(1)多种精子和多种卵细胞之间有多种结合方式,导致后代性状多种多样,但不属于基因重组。
(2)具有一对等位基因的杂合子自交,后代发生性状分离,根本原因是等位基因的分离,而不是基因重组。
(3)“肺炎双球菌的转化实验”、DNA重组技术等属于广义的基因重组。
1.列表对比基因突变与基因重组
项目
基因突变
基因重组
发生时期
主要发生在:①有丝分裂间期
②MⅠ分裂前的间期
①MⅠ分裂后期
②MⅠ分裂前期
产生原因
物理、化学、生物因素引起
↓
碱基对的增添、缺失、替换
↓
导致基因结构的改变
交叉互换、自由组合
↓
基因重新组合
应用
诱变育种
杂交育种
联系
①都使生物产生可遗传的变异
②在长期进化过程中,通过基因突变产生新基因,为基因重组提供了大量可供自由组合的新基因,基因突变是基因重组的基础
③二者均产生新的基因型,可能产生新的表现型
2.姐妹染色单体上等位基因来源的判断
(1)据细胞分裂图判断
图示
解读
①如果是有丝分裂后期图像,两条子染色体上的两基因不同,则为基因突变的结果,如图甲
②如果是减数第二次分裂后期图像,两条子染色体(同白或同黑)上的两基因不同,则为基因突变的结果,如图乙
③如果是减数第二次分裂后期图像,两条子染色体(颜色不一致)上的两基因不同,则为交叉互换(基因重组)的结果,如图丙
(2)据细胞分裂方式判断
①如果是有丝分裂中染色单体上基因不同,则为基因突变的结果。
②如果是减数分裂过程中染色单体上基因不同,可能发生了基因突变或交叉互换。
(3)据亲子代基因型判断
①如果亲代基因型为BB或bb,则引起姐妹染色单体上B与b不同的原因是基因突变。
②如果亲代基因型为Bb,则引起姐妹染色单体上B与b不同的原因是基因突变或交叉互换。
[对点落实]
4.(2019·襄阳四校联考)下列有关基因突变和基因重组的叙述,正确的是( )
A.获得能产生人胰岛素的大肠杆菌的原理是基因突变
B.非同源染色体片段之间局部交换可导致基因重组
C.同源染色体上的基因也可能发生基因重组
D.发生在水稻根尖内的基因重组比发生在花药中的更容易遗传给后代
解析:选C 获得能产生人胰岛素的大肠杆菌的过程是基因工程,依据的原理是基因重组;非同源染色体片段之间局部交换属于染色体结构变异中的易位,不是基因重组;在减数第一次分裂的四分体时期,同源染色体上的非姐妹染色单体之间发生的交叉互换属于基因重组;发生在水稻花药中的变异比发生在根尖内的变异更容易遗传给后代,基因重组只发生在减数分裂过程中,水稻根尖内不能发生基因重组。
5.某动物的初级卵母细胞中,由一个着丝点相连的两条染色单体所携带的基因不完全相同,其原因一定不是( )
A.发生基因突变 B.发生过交叉互换
C.染色体结构变异 D.发生了自由组合
解析:选D 两条姐妹染色单体所携带的基因不完全相同的原因有三种可能:间期发生了基因突变、四分体时期发生过交叉互换或染色体结构变异。自由组合只发生在非同源染色体间。
6.下图是基因型为Aa的个体不同分裂时期的图像,根据图像判定每个细胞发生的变异类型,正确的是( )
A.①基因突变 ②基因突变 ③基因突变
B.①基因突变或基因重组 ②基因突变 ③基因重组
C.①基因突变 ②基因突变 ③基因突变或基因重组
D.①基因突变或基因重组 ②基因突变或基因重组
③基因重组
解析:选C 图中①②分别处于有丝分裂的中期和后期,A与a所在的DNA分子是由一个DNA分子经过复制而得到的,图中①②的变异只能来自基因突变;③处于MⅡ后期,A与a的不同可能来自基因突变或MⅠ前期的交叉互换(基因重组)。
课堂一刻钟
1.(2018·全国卷Ⅰ)某大肠杆菌能在基本培养基上生长,其突变体M和N均不能在基本培养基上生长,但M可在添加了氨基酸甲的基本培养基上生长,N可在添加了氨基酸乙的基本培养基上生长。将M和N在同时添加氨基酸甲和乙的基本培养基中混合培养一段时间后,再将菌体接种在基本培养基平板上,发现长出了大肠杆菌(X)的菌落。据此判断,下列说法不合理的是( )
A.突变体M催化合成氨基酸甲所需酶的活性丧失
B.突变体M和N都是由于基因发生突变而得来的
C.突变体M的RNA与突变体N混合培养能得到X
D.突变体M和N在混合培养期间发生了DNA转移
解题关键——灵活迁移
此选项考查角度要迁移交汇到肺炎双球菌转化实验的相关知识。由题干信息可确定突变体M与突变体N混合培养能得到X是由细菌间DNA的转移实现的。
解析:选C 突变体M不能在基本培养基上生长,但可在添加了氨基酸甲的培养基上生长,说明该突变体不能合成氨基酸甲,可能是催化合成氨基酸甲所需酶的活性丧失;大肠杆菌属于原核生物,自然条件下其变异类型只有基因突变,故其突变体是由于基因发生突变产生的;大肠杆菌的遗传物质是DNA,突变体M的RNA与突变体N混合培养不能得到X;突变体M和N在混合培养期间发生了DNA转移,使基因发生重组,产生了新的大肠杆菌X。
2.(2015·海南高考)关于等位基因B和b发生突变的叙述,错误的是( )
A.等位基因B和b都可以突变成为不同的等位基因
B.X射线的照射不会影响基因B和基因b的突变率
C.基因B中的碱基对G—C被碱基对A—T替换可导致基因突变
D.在基因b的ATGCC序列中插入碱基C可导致基因b的突变
命题探源——以“本”为本
此选项是对教材内容的变式考查,人教版必修②教材中明确说明X射线会诱发基因突变,因此只有对教材知识熟记才是解答此类题的根本。
解析:选B 基因突变具有不定向性,等位基因B和b都可以突变成为不同的等位基因;X射线的照射会影响基因B和基因b的突变率;基因B中的碱基对G—C被碱基对A—T替换可导致基因突变;在基因b的ATGCC序列中插入碱基C可导致基因b的突变。
3.(2015·江苏高考)经X射线照射的紫花香豌豆品种,其后代中出现了几株开白花植株,下列叙述错误的是( )
A.白花植株的出现是对环境主动适应的结果,有利于香豌豆的生存
B.X射线不仅可引起基因突变,也会引起染色体变异
C.通过杂交实验,可以确定是显性突变还是隐性突变
D.观察白花植株自交后代的性状,可确定是否是可遗传变异
易错探因——概念不清
变异是不定向的,不会发生主动适应环境的变异。考生常混淆变异、进化与适应的关系,认为生物的适应性是生物为适应环境而发生的定向变异,在解答此类问题时应建立适应是自然选择结果的观念。
解析:选A 变异具有不定向性,不存在主动适应;X射线可导致生物体发生基因突变或染色体变异;白花植株与原紫花品种杂交,若后代都是紫花植株,则白花植株是隐性突变的结果,若后代都是白花或既有白花又有紫花,则是显性突变的结果;白花植株的自交后代中若出现白花植株,则是可遗传变异,若全是紫花植株,则是不遗传变异。
4.(2014·浙江高考)除草剂敏感型的大豆经辐射获得抗性突变体,且敏感基因与抗性基因是1对等位基因。下列叙述正确的是( )
A.突变体若为1条染色体的片段缺失所致,则该抗性基因一定为隐性基因
B.突变体若为1对同源染色体相同位置的片段缺失所致,则再经诱变可恢复为敏感型
C.突变体若为基因突变所致,则再经诱变不可能恢复为敏感型
D.抗性基因若为敏感基因中的单个碱基对替换所致,则该抗性基因一定不能编码肽链
破题障碍——不明题意
造成部分学生答题障碍的原因是没有正确理解选项A所表述的生物学现象,即染色体片段缺失和基因突变一样都会改变生物性状,这种缺失往往是杂合子中的显性基因所在染色体片段缺失,即 。
解析:选A 假设敏感和抗性由基因A、a控制,若突变体为1条染色体的片段缺失所致,则原敏感型大豆基因型为Aa,缺失了A基因所在染色体片段导致抗性突变体出现,则抗性基因一定是隐性基因;突变体若为1对同源染色体相同位置的片段缺失所致,则该个体没有控制这对性状的基因,再经诱变也不可能恢复为敏感型;基因突变是可逆的,再经诱变可能恢复为敏感型;抗性基因若为敏感基因中的单个碱基对替换所致,则此情况属于基因突变,抗性基因可能编码肽链,也可能不编码肽链。
5.(2016·全国卷Ⅲ)基因突变和染色体变异是真核生物可遗传变异的两种来源。回答下列问题:
(1)基因突变和染色体变异所涉及到的碱基对的数目不同,前者所涉及的数目比后者______。
(2)在染色体数目变异中,既可发生以染色体组为单位的变异,也可发生以__________为单位的变异。
(3)基因突变既可由显性基因突变为隐性基因(隐性突变),也可由隐性基因突变为显性基因(显性突变)。若某种自花受粉植物的AA和aa植株分别发生隐性突变和显性突变,且在子一代中都得到了基因型为Aa的个体,则最早在子__________代中能观察到该显性突变的性状;最早在子________代中能观察到该隐性突变的性状;最早在子________代中能分离得到显性突变纯合体;最早在子________代中能分离得到隐性突变纯合体。
易错探因——原理不明
显性突变是aa突变为Aa;隐性突变是AA突变为Aa。对显性突变,只要个体具有显性基因,就会表现出显性性状,而对隐性性状,个体只有隐性纯合才会表现。明确这个原理(3)小题答案就呼之欲出了。
解析:(1)基因突变是指基因中碱基对的替换、增添和缺失;染色体变异包括染色体结构变异和染色体数目变异,通常染色体变异涉及许多基因的变化,故基因突变涉及的碱基对数目比染色体变异涉及的少。(2)在染色体数目变异中,既可发生以染色体组为单位的变异,也可发生以染色体为单位的变异。(3)显性突变是aa突变为Aa,在子一代中能观察到该显性突变的性状,子一代自交,子二代的基因型为AA、Aa和aa,子二代再自交,子三代不发生性状分离才算得到显性突变纯合体;隐性突变是AA突变为Aa,在子一代还是表现为显性性状,子一代自交,子二代的基因型为AA、Aa和aa,即能观察到该隐性突变的性状,也就是隐性突变纯合体。
答案:(1)少 (2)染色体 (3)一 二 三 二
[学情考情·了然于胸]
一、明考情·知能力——找准努力方向
考查知识
1.基因突变的类型、特点和意义,重点考查基因突变的原理和特点。
2.基因重组的概念、类型和意义,多考查基因突变与基因重组的关系。
考查能力
1.识记能力:主要考查对基因突变和基因重组类型和特点的识记能力。
2.推理能力:主要考查基因突变与生物性状的关系,根据性状确定变异类型。
二、记要点·背术语——汇总本节重点
1.可遗传的变异:基因突变、基因重组和染色体变异都是可遗传变异的来源,原因是三者细胞内遗传物质都发生了变化。
2.基因突变
(1)基因突变是由于DNA分子中发生碱基对的替换、增添和缺失,而引起的基因结构的改变。
(2)基因突变是新基因产生的途径,是生物变异的根本来源,是生物进化的原始材料。
3.基因重组
(1)基因重组是指在生物体进行有性生殖的过程中,控制不同性状的基因的重新组合。基因重组也是生物变异的来源之一,对生物的进化也具有重要的意义。
(2)基因重组主要来源于减数分裂形成配子时,非同源染色体上的非等位基因的自由组合及同源染色体上的非姐妹染色单体间的交叉互换。基因工程中的转基因操作也属于基因重组。
[课下达标检测]
一、选择题
1.下列有关基因突变和基因重组的叙述,正确的是( )
A.基因突变对生物个体是利多于弊
B.基因突变所产生的基因都可以遗传给后代
C.基因重组能产生新的基因
D.在自然条件下,基因重组是进行有性生殖的生物才具有的一种可遗传变异方式
解析:选D 基因突变具有多害少利的特点;发生在体细胞中的基因突变一般不能遗传给后代;只有基因突变才可以产生新的基因,基因重组可以产生新的基因型;在自然条件下,只有进行有性生殖的生物才会发生基因重组。
2.下列关于遗传变异的说法正确的是( )
A.任何生物在遗传过程中都可以发生基因突变、基因重组和染色体变异
B.花药离体培养过程中发生的变异有基因重组和染色体变异
C.基因突变可发生在细胞内不同DNA分子上体现了其随机性
D.基因重组和染色体变异都可导致基因在染色体上的排列顺序发生改变
解析:选C 原核生物和病毒不含染色体,不会发生染色体变异,基因重组一般发生在真核生物的有性生殖过程中;花药离体培养成单倍体幼苗过程中发生的是有丝分裂,该过程可以发生基因突变和染色体变异,但不会发生基因重组;细胞的不同DNA分子上的基因都可能发生突变,体现了基因突变的随机性;基因重组和染色体数目变异不会导致染色体上基因的排列顺序发生改变。
3.(2019·巢湖质检)如图是某二倍体动物细胞分裂示意图,其中字母表示基因。据图判断正确的是( )
A.此细胞含有4个染色体组,8个DNA分子
B.此动物体细胞基因型一定是AaBbCcDd
C.此细胞发生的一定是显性突变
D.此细胞既发生了基因突变又发生了基因重组
解析:选D 图示细胞有2个染色体组,8个DNA分子;细胞中正在发生同源染色体的分离,非同源染色体上非等位基因的自由组合,即基因重组;图中一条染色体的姐妹染色单体相同位置的基因为D和d,其对应的同源染色体上含有d、d,但不能确定是D突变成d,还是d突变成D,故可能发生的是隐性突变,也可能发生的是显性突变。
4.(2018·齐齐哈尔三模)诺贝尔生理学或医学奖获得者克隆了果蝇的period基因,并发现该基因编码的mRNA和蛋白质含量随昼夜节律而变化。下列相关叙述正确的是( )
A.period基因的基本组成单位是核糖核苷酸
B.period基因的表达不受环境的影响
C.period基因突变一定导致果蝇生物钟改变
D.period基因所在的DNA分子在细胞内复制时需要解旋酶和DNA聚合酶等
解析:选D period基因的基本组成单位是脱氧核苷酸;基因的表达受环境温度以及其他调节因子的影响;period基因突变对应蛋白质中氨基酸序列可能不变,或发生隐性突变,不一定导致果蝇生物钟改变;DNA分子在细胞内复制时需在解旋酶作用下解开双螺旋,在DNA聚合酶作用下延伸子链。
5.研究发现果蝇有一种储存及利用能量的基因(Indy基因),该基因变异后,可以对果蝇细胞级别的能量吸收进行限制,即让果蝇的细胞节食,进而使果蝇的寿命明显延长。而人类有着和果蝇类似的DNA序列。关于上述研究成果的叙述,正确的是( )
A.Indy基因变异后,果蝇体内细胞将不再衰老
B.对Indy基因进行诱变,一定可以使果蝇寿命明显延长
C.Indy基因的正常表达能限制果蝇细胞级别的能量吸收
D.人类有可能研制出一种既能延长寿命又能控制体重的药物
解析:选D 依据题干信息可知,该基因突变后,使细胞节食,进而延长果蝇寿命,但细胞仍会衰老;因基因突变具有不定向性,故对Indy基因进行诱导不一定形成使果蝇寿命延长的基因;该基因未变异前即正常表达时会使细胞正常储存和利用能量,基因变异后才会导致细胞节食;依据该基因变异后延长寿命的原理,人类可研制出延长寿命和控制体重的药物。
6.如图是三种因相应结构发生替换而产生变异的示意图,下列相关判断错误的是( )
A.镰刀型细胞贫血症的变异类型类似于过程①
B.过程②的变异类型为基因重组,发生在减数第一次分裂前期
C.过程③能在光学显微镜下观察到
D.杂交育种的原理是过程③
解析:选D 镰刀型细胞贫血症的患病原因是基因突变,与过程①类似;过程②表示同源染色体中非姐妹染色单体之间的交叉互换,变异类型属于基因重组,发生在减数第一次分裂前期;过程③表示染色体的某一片段移接到另一条非同源染色体上而引起的变异,即易位,这属于染色体结构变异,在光学显微镜下能够观察到;杂交育种的原理是基因重组,而③表示染色体变异。
7.周期性共济失调是一种编码细胞膜上钙离子通道蛋白基因发生突变导致的遗传病,该突变基因转录形成的mRNA长度不变,但合成的多肽链缩短,使通道蛋白结构异常而致病。下列有关叙述,正确的是( )
A.翻译的多肽链缩短说明编码基因一定发生了碱基对的缺失
B.该病例说明了基因能通过控制酶的合成来控制生物的性状
C.突变导致基因转录和翻译过程中碱基互补配对原则发生改变
D.患该病的原因可能是基因中碱基对的替换而导致mRNA上终止密码子提前出现
解析:选D 正常基因和突变基因转录出的mRNA长度相同,但致病基因控制合成的异常多肽链较正常多肽链短,原因可能是基因中碱基对发生替换,使对应的密码子变为终止密码子,导致mRNA上终止密码子提前出现;周期性共济失调是一种编码细胞膜上钙离子通道蛋白基因发生突变导致的遗传病,说明基因能通过控制蛋白质的结构直接控制生物体的性状;突变不会导致基因转录和翻译过程中碱基互补配对原则改变。
8.已知与人体血红蛋白合成有关的一对等位基因是HbA和HbS,只有纯合子(HbSHbS)患镰刀型细胞贫血症,患者大多于幼年死亡,只含一个致病基因的个体不表现为镰刀型细胞贫血症,并对疟疾具有较强的抵抗力。以下说法错误的是( )
A.基因HbS是基因突变的结果,可以用显微镜检测镰刀型细胞贫血症
B.纯合子(HbAHbA)具有较强的抗疟疾能力
C.基因HbA和HbS不可能存在于一个染色体组中
D.该现象说明基因突变改变了生物的表现型
解析:选B 基因HbS是正常基因HbA发生基因突变的结果,突变后形成的镰刀型红细胞可以用显微镜观察到;由题干信息不能得出纯合子(HbAHbA)具有较强的抗疟疾能力;HbA和HbS是一对等位基因,位于一对同源染色体的相同位置上,而同源染色体不会存在于一个染色体组中,因此基因HbA和HbS不可能存在于一个染色体组中;纯合子(HbSHbS)患病,杂合子(HbAHbS)不患病且抗疟疾能力增强,以上现象说明基因突变改变了生物的表现型。
9.人体甲状腺滤泡上皮细胞具有很强的摄碘能力。临床上常用小剂量的放射性同位素131I治疗某些甲状腺疾病。但大剂量的131I对人体会产生有害影响。积聚在细胞内的131I可能直接( )
A.插入DNA分子引起插入点后的碱基序列改变
B.替换DNA分子中的某一碱基引起基因突变
C.造成染色体断裂、缺失或易位等染色体结构变异
D.诱发甲状腺滤泡上皮细胞基因突变并遗传给下一代
解析:选C 131I不能插入DNA分子中,也不能替换DNA分子中的碱基;大剂量的放射性同位素131I会导致基因突变或染色体结构的变异;上皮细胞属于体细胞,发生基因突变后不会遗传给下一代。
10.某二倍体植物染色体上的基因E2发生了基因突变,形成了它的等位基因E1,导致所编码的蛋白质中一个氨基酸被替换,下列叙述正确的是( )
A.基因E2形成E1时,该基因在染色体上的位置和其上的遗传信息会发生改变
B.基因E2突变形成E1,该变化是由基因中碱基对的替换、增添和缺失导致的
C.基因E2形成E1时,一定会使代谢加快,细胞中含糖量增加,采摘的果实更加香甜
D.在自然选择作用下,该种群基因库中基因E2的基因频率会发生改变
解析:选D 基因E2突变形成E1时,其上的遗传信息会发生改变,但在染色体上的位置不变;蛋白质中只有一个氨基酸被替换,这说明该突变是由基因中碱基对的替换造成的,碱基对的增添和缺失会造成氨基酸数目和种类的改变;基因突变具有不定向性和多害少利性,基因E2突变形成E1后,植株代谢不一定加快,含糖量不一定增加。
11.最新研究发现白癜风致病根源与人体血清中的酪氨酸酶活性减小或丧失有关,当编码酪氨酸酶的基因中某些碱基改变时,表达产物将变为酶A,下表显示酶A与酪氨酸酶相比,可能出现的四种情况。相关叙述正确的是( )
比较指标
①
②
③
④
患者白癜风面积
30%
20%
10%
5%
酶A氨基酸数目/酪氨酸酶氨基酸数目
1.1
1
1
0.9
A.①④中碱基的改变是染色体结构变异导致的
B.②③中氨基酸数目没有改变,对应的mRNA中碱基排列顺序也不会改变
C.①使tRNA种类增多,④使tRNA数量减少,②③中tRNA的数量没有变化
D.①④可能导致控制酪氨酸酶合成的mRNA中的终止密码子位置改变
解析:选D 根据题干“编码酪氨酸酶的基因中某些碱基改变”,说明只是该基因内部结构改变,整个DNA分子上基因的数量和位置都没有改变,所以属于基因突变,不属于染色体结构变异;编码酪氨酸酶的基因中某些碱基改变,则转录产生的mRNA中碱基排列顺序必然改变;同一tRNA可多次使用,其数量不会随基因中碱基的改变而改变;根据表中①④数据分析,突变后合成的蛋白质中氨基酸数目改变,说明合成酪氨酸酶的mRNA中的终止密码子位置可能发生了改变。
12.(2019·天津模拟)下列关于生物变异、育种的叙述,正确的是( )
A.育种可以培育出新品种,也可能得到新物种
B.无子果实的获得均要用到秋水仙素,变异类型为染色体的数目变异
C.中国荷斯坦牛、青霉素高产菌株和转基因抗虫棉的培育依据的原理相同
D.联会时的交叉互换实现了非同源染色体上非等位基因的重新组合
解析:选A 育种可以培育出新品种,也可能得到新物种,例如由二倍体生物培育而成的四倍体生物,与原二倍体生物存在生殖隔离,是一个新物种;无子果实的获得,有的要用到秋水仙素(如三倍体无子西瓜),变异类型为染色体的数目变异,有的是用一定浓度的生长素涂在没有受粉的雌蕊柱头上得到的(如无子番茄);中国荷斯坦牛的培育采用了试管动物技术,属于有性生殖的范畴,其培育原理与转基因抗虫棉的培育依据的原理相同,都是基因重组,青霉素高产菌株的培育依据的原理是基因突变;联会时的同源染色体上的等位基因随非姐妹染色单体的交叉互换实现了基因的重新组合。
二、非选择题
13.(2019·南昌模拟)如图表示细胞中出现的异常mRNA被SURF复合物识别而发生降解的过程,该过程被称为NMD作用,能阻止有害异常蛋白的表达。NMD作用常见于人类遗传病中,如我国南方地区高发的地中海贫血症(AUG、UAG分别为起始和终止密码子)。
(1)图中异常mRNA与正常mRNA长度相同,推测终止密码子提前出现的原因是基因中发生了________。
(2)异常mRNA来自突变基因的________,其降解产物为____________。如果异常mRNA不发生降解,细胞内就会产生肽链较________的异常蛋白。
(3)常染色体上的正常β珠蛋白基因(A+)既有显性突变(A),又有隐性突变(a),两者均可导致地中海贫血症。据下表分析:
基因型
aa
A+A
A+a
表现型
重度贫血
中度贫血
轻度贫血
原因分析
能否发生NMD作用
能
②
能
β珠蛋白合成情况
①
合成少量
合成少量
表格中①②处分别为:①________;②________;除表中所列外,贫血患者的基因型还有________。
解析:(1)图中异常mRNA与正常mRNA长度相同,推测终止密码子提前出现的原因是基因中发生了碱基对的替换。(2)突变后的异常基因通过转录过程形成异常mRNA,mRNA的基本组成单位是核糖核苷酸,因此mRNA降解产物是核糖核苷酸;分析题图可知,异常mRNA中终止密码子比正常mRNA中的终止密码子提前出现,因此如果异常mRNA不发生降解,细胞内翻译过程会产生肽链较短的异常蛋白质。(3)分析表格中的信息可知,基因型为A+A和A+a的个体分别表现为中度贫血和轻度贫血,合成的β珠蛋白少,基因型为aa的个体表现为重度贫血,不能合成β珠蛋白;根据题干信息可知,基因的显隐性关系为:A>A+>a;A+a的个体能发生NMD作用,体内有正常基因的表达产物,所以表现为轻度贫血;基因型为aa的个体能发生NMD作用,无β珠蛋白合成,表现为重度贫血;基因型为A+A的个体表现为中度贫血,说明其异常β珠蛋白基因的表达未能被抑制,因此不能发生NMD作用,导致异常蛋白合成。由题意可知,显性突变(A)和隐性突变(a)均可导致地中海贫血症,因此除表中所列外,贫血患者的基因型还有AA、Aa。
答案:(1)碱基替换 (2)转录 核糖核苷酸 短 (3)无合成 不能 AA、Aa
14.在一个鼠(2N)的种群中,鼠的毛色有野生型黄色(A)、突变型灰色(a1)和突变型黑色(a2)三种表现型,基因A对a1和a2为显性,a1对a2为显性,三种基因的形成关系如图所示。请回答:
(1)由图可以看出DNA分子中碱基对的____________能导致基因突变。
(2)基因a2控制的蛋白质肽链长度明显变短,这是由于基因突变导致__________________,在细胞质中参与该蛋白质合成的核酸有________________。
(3)杂合灰色鼠精巢中的一个细胞中含有2个a2基因,原因最可能是__________________,此时该细胞可能含有________个染色体组。
(4)有些杂合黄色小鼠的皮毛上出现灰色斑点,请从可遗传变异的角度对这一现象做出合理解释。______________________________________________________________
________________________________________________________________________。
解析:(1)分析图示可知:a1基因的产生是由于A基因中的碱基对C∥G被T∥A替换,a2基因的产生是由于A基因中的碱基对T∥A的缺失,因此DNA分子中碱基对的缺失、替换能导致基因突变。(2)基因a2控制的蛋白质肽链长度明显变短,这是由于基因突变导致翻译提前终止,在细胞质中参与该蛋白质合成的核酸种类有tRNA、mRNA、rRNA。(3)杂合灰色鼠精巢中的一个细胞中含有2个a2基因,其原因最可能是DNA发生了复制(染色体复制)。若该细胞为处于减数第二次分裂前期或中期的次级精母细胞,则含有1个染色体组;若该细胞为处于有丝分裂前期或中期的精原细胞,或者是处于减数第二次分裂后期的次级精母细胞,则含有2个染色体组;若该细胞为处于有丝分裂后期的精原细胞,则含有4个染色体组;综上分析,该细胞可能含有1或2或4个染色体组。(4)A基因控制黄色、a1基因控制灰色,且A对a1为显性。有些杂合黄色小鼠的皮毛上出现灰色斑点,说明这些杂合黄色小鼠的基因型为Aa1,灰色斑点的出现是由于部分细胞中A基因突变成了a1,表现为灰色(或部分细胞带有A基因的染色体片段缺失,使a1基因表达的性状表现了出来)。
答案:(1)缺失、替换 (2)翻译提前终止 tRNA、mRNA、rRNA (3)DNA发生了复制(染色体复制) 1或2或4 (4)部分细胞A基因突变成了a1,表现为灰色(或部分细胞带有A基因的染色体片段缺失,使a1基因表达的性状表现了出来)
15.科研人员利用化学诱变剂EMS诱发水稻D11基因突变,选育出一种纯合矮秆水稻突变植株(甲)。将该矮秆水稻与正常水稻杂交,F2表现型及比例为正常植株∶矮秆植株=3∶1。D11基因的作用如下图所示。请分析并回答问题:
(1)BR与BR受体结合后,可促进水稻细胞伸长,这体现了细胞膜的____________功能。
(2)EMS诱发D11基因发生________(填“显性”或“隐性”)突变,从而________(填“促进”或“抑制”)CYP724B1酶的合成,水稻植株内BR含量________,导致产生矮秆性状。
(3)研究发现,EMS也会诱发D61基因发生突变使BR受体合成受阻。由此说明基因突变具有________特点。
(4)科研人员利用EMS又选育出若干株纯合矮秆水稻突变植株(乙)。现将甲、乙水稻植株杂交,以判断乙水稻矮秆性状的产生原因是与甲水稻相同(仅由D11基因突变引起的),还是仅由D61基因发生显性或隐性突变引起的(其他情况不考虑)。
①若杂交子代皆表现为正常植株,则表明乙水稻矮秆性状是由D61基因发生________(填“显性”或“隐性”)突变引起的。
②若杂交子代出现矮秆植株,尚不能确定乙水稻矮秆性状的产生原因。请进一步设计操作较简便的实验方案,预期实验结果及结论。
实验方案:杂交子代矮秆植株苗期喷施BR,分析统计植株的表现型及比例。
预期实验结果及结论:若植株全为________植株,则乙水稻矮秆性状的产生原因是与甲水稻相同;若植株全为________植株,则乙水稻矮秆性状的产生是仅由D61基因发生显性突变引起的。
解析:(1)BR与BR受体结合后,可促进水稻细胞伸长,这体现了细胞膜的信息交流功能。(2)F2表现型及比例为正常植株∶矮秆植株=3∶1,说明正常相对于矮秆为显性性状,由此可见EMS诱发D11基因发生了隐性突变;D11基因能控制合成CYP724B1酶,EMS诱发D11基因发生基因突变后会抑制CYP724B1酶的合成,使水稻植株内BR含量减少,进而产生矮秆性状。(3)EMS既会诱发D11基因发生基因突变,也会诱发D61基因发生突变,可见基因突变具有随机性特点。 (4)纯合矮秆水稻突变植株(甲)是D11基因发生隐性突变形成的,现将甲、乙水稻植株杂交,以判断乙水稻矮秆性状的产生原因是与甲水稻相同(仅由D11基因突变引起的),还是仅由D61基因发生显性或隐性突变引起的。①若杂交子代皆表现为正常植株,说明D11基因能控制合成CYP724B1酶,进而形成BR,且BR的受体正常,这表明乙水稻矮秆性状是由D61基因发生隐性突变引起的。②若杂交子代皆表现为矮秆植株,乙水稻矮秆性状的产生原因可能是与甲水稻相同(仅由D11基因突变引起的),也可能是仅由D61基因发生显性突变引起的,需要进行进一步实验来探究。若乙水稻矮秆性状的产生原因是与甲水稻相同(仅由D11基因突变引起的),则其矮秆性状形成的原因是不能合成CYP724B1酶,导致BR不能形成所致,这可通过给杂交子代矮秆植株苗期喷施BR,分析统计植株的表现型及比例来判断,若植株全为正常植株,则乙水稻矮秆性状的产生原因与甲水稻相同。
答案:(1)信息交流(或信息传递) (2)隐性 抑制 减少 (3)随机性 (4)①隐性 ②正常 矮秆
相关资料
更多