新课改专用2020版高考数学一轮跟踪检测15《导数的概念及运算》(含解析)
展开课时跟踪检测(十五) 导数的概念及运算
[A级 保分题——准做快做达标]
1.曲线y=ex-ln x在点(1,e)处的切线方程为( )
A.(1-e)x-y+1=0 B.(1-e)x-y-1=0
C.(e-1)x-y+1=0 D.(e-1)x-y-1=0
解析:选C 由于y′=e-,所以y′|x=1=e-1,故曲线y=ex-ln x在点(1,e)处的切线方程为y-e=(e-1)(x-1),即(e-1)x-y+1=0.
2.已知函数f(x)=aln x+bx2的图象在点P(1,1)处的切线与直线x-y+1=0垂直,则a的值为( )
A.-1 B.1
C.3 D.-3
解析:选D 由已知可得P(1,1)在函数f(x)的图象上,
所以f(1)=1,即aln 1+b×12=1,解得b=1,
所以f(x)=aln x+x2,
故f′(x)=+2x.
则函数f(x)的图象在点P(1,1)处的切线的斜率k=f′(1)=a+2,
因为切线与直线x-y+1=0垂直,
所以a+2=-1,即a=-3.
3.(2019·珠海期末)曲线y=x3-2x+4在点(1,3)处的切线的倾斜角为( )
A.30° B.45°
C.60° D.120°
解析:选B 由题意知点(1,3)在曲线y=x3-2x+4上.∵y=x3-2x+4,∴y′=3x2-2,根据导数的几何意义,可知曲线y=x3-2x+4在点(1,3)处的切线的斜率k=y′|x=1=1,∴曲线y=x3-2x+4在点(1,3)处的切线的倾斜角为45°.故选B.
4.(2019·青岛模拟)已知f1(x)=sin x+cos x,fn+1(x)是fn(x)的导函数,即f2(x)=f1′(x),f3(x)=f2′(x),…,fn+1(x)=fn′(x),n∈N*,则f2 018(x)=( )
A.-sin x-cos x B.sin x-cos x
C.-sin x+cos x D.sin x+cos x
解析:选C ∵f1(x)=sin x+cos x,∴f2(x)=f1′(x)=cos x-sin x,f3(x)=f2′(x)=-sin x-cos x,f4(x)=f3′(x)=-cos x+sin x,f5(x)=f4′(x)=sin x+cos x,…,∴fn(x)的解析式以4为周期重复出现,∵2 018=4×504+2,∴f2 018(x)=f2(x)=-sin x+cos x,故选C.
5.(2019·山东省实验中学一模)设函数f(x)=x3+ax2,若曲线y=f(x)在点P(x0,f(x0))处的切线方程为x+y=0,则点P的坐标为( )
A.(0,0) B.(1,-1)
C.(-1,1) D.(1,-1)或(-1,1)
解析:选D f′(x)=3x2+2ax,依题意,得解得或故选D.
6.(2019·湖北黄石二中一模)若直线y=kx+2是函数f(x)=x3-x2-3x-1图象的一条切线,则k=( )
A.1 B.-1
C.2 D.-2
解析:选C 直线y=kx+2过(0,2),f′(x)=3x2-2x-3,设切点为(x0,y0),故切线方程为y-y0=(3x-2x0-3)(x-x0),将(0,2)代入切线方程并结合y0=x-x-3x0-1,解得x0=-1,y0=0,代入y=kx+2,解得k=2.
7.(2019·银川一中月考)设函数f(x)=x3+x2+4x-1,θ∈,则导数f′(-1)的取值范围是( )
A.[3,4+] B.[3,6]
C.[4-,6] D.[4-,4+]
解析:选B 求导得f′(x)=x2sin θ+xcos θ+4,将x=-1代入导函数,得f′(-1)=sin θ-cos θ+4=2sin+4,由θ∈,可得θ-∈,∴sin∈,∴2sin+4∈[3,6].故选B.
8.(2019·巴蜀中学模拟)已知曲线y=在点P(2,4)处的切线与直线l平行且距离为2,则直线l的方程为( )
A.2x+y+2=0
B.2x+y+2=0或2x+y-18=0
C.2x-y-18=0
D.2x-y+2=0或2x-y-18=0
解析:选B y′==-,y′|x=2=-=-2,因此kl=-2,设直线l方程为y=-2x+b,即2x+y-b=0,由题意得=2,解得b=18或b=-2,所以直线l的方程为2x+y-18=0或2x+y+2=0.故选B.
9.(2019·成都双流区模拟)过曲线y=x2-2x+3上一点P作曲线的切线,若切点P的横坐标的取值范围是,则切线的倾斜角的取值范围是( )
A. B.
C.[0,π) D.
解析:选B 因为y′=2x-2,1≤x≤,所以0≤2x-2≤1.设切线的倾斜角为α,则0≤tan α≤1.因为0≤α≤π,所以0≤α≤,故选B.
10.(2019·广东七校联考)函数f(x)=xcos x的导函数f′(x)在区间[-π,π]上的图象大致是( )
解析:选A 法一:由题意,得f′(x)=cos x+x(-sin x)=cos x-xsin x,f′(-x)=f′(x),所以f′(x)为偶函数.又f′(0)=1,所以排除C、D;令g(x)=f′(x)=cos x-xsin x,则g′(x)=-xcos x-2sin x,易知g′(0)=0,且当x∈时,g′(x)<0,f′(x)单调递减,当x∈时,g′(x)>0,f′(x)单调递增,所以f′(x)在x=0处取得极大值,排除选项B.故选A.
法二:由题意,得f′(x)=cos x+x(-sin x)=cos x-xsin x,又f′(0)=1,所以排除C,D;当x∈时,y=cos x单调递减,对于y=xsin x,y′=xcos x+sin x>0,则y=xsin x单调递增,则f′(x)=cos x-xsin x在上单调递减.故选A.
11.(2018·全国卷Ⅱ)曲线y=2ln x在点(1,0)处的切线方程为______________.
解析:因为y′=,y′|x=1=2,所以切线方程为y-0=2(x-1),即y=2x-2.
答案:y=2x-2
12.若点P是曲线y=x2-ln x上任意一点,则点P到直线y=x-2的最小距离为________.
解析:由y=x2-ln x,得y′=2x-(x>0),
设点P0(x0,y0)是曲线y=x2-ln x上到直线y=x-2的距离最小的点,
则y′x=x0=2x0-=1,解得x0=1或x0=-(舍去).
∴点P0的坐标为(1,1).
∴所求的最小距离为=.
答案:
13.(2019·石家庄二中月考)已知函数f(x)=,g(x)=x2.若直线l与曲线f(x),g(x)都相切,则直线l的斜率为________.
解析:因为f(x)=,所以f′(x)=-,设曲线f(x)与l切于点,则切线斜率k=-,故切线方程为y-=-(x-x1),即y=-x+.与g(x)=x2联立,得x2+x-=0.因为直线l与曲线g(x)相切,所以2-4=0,解得x1=-,故斜率k=-=-4.
答案:-4
14.(2019·淄博六中期末)曲线y=ln(2x-1)上的点到直线2x-y+3=0的最短距离为________.
解析:设曲线上过点P(x0,y0)的切线平行于直线2x-y+3=0,即斜率是2,则y′|x=x0==2,解得x0=1,所以y0=0,即点P(1,0).又点P到直线2x-y+3=0的距离为=,所以曲线y=ln(2x-1)上的点到直线2x-y+3=0的最短距离是.
答案:
15.(2019·孝感高中期中)已知函数f(x)=x3-x.
(1)求曲线y=f(x)在点M(1,0)处的切线方程;
(2)如果过点(1,b)可作曲线y=f(x)的三条切线,求实数b的取值范围.
解:(1)f′(x)=3x2-1,∴f′(1)=2.
故切线方程为y-0=2(x-1),即2x-y-2=0.
(2)设切点为(x0,x-x0),则切线方程为y-(x-x0)=f′(x0)(x-x0).
又切线过点(1,b),所以(3x-1)(1-x0)+x-x0=b,
即2x-3x+b+1=0.
由题意,上述关于x0的方程有三个不同的实数解.
记g(x)=2x3-3x2+b+1,则g(x)有三个不同的零点,
而g′(x)=6x(x-1),令g′(x)=0得x=0或x=1,则结合图像可知g(0)g(1)<0即可,可得b∈(-1,0).
16.设函数f(x)=ax-,曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=0.
(1)求f(x)的解析式;
(2)曲线y=f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形的面积是否为定值,若是,求此定值;若不是,说明理由.
解:(1)方程7x-4y-12=0可化为y=x-3,
当x=2时,y=.
又f′(x)=a+,所以解得
故f(x)=x-.
(2)是定值,理由如下:
设P(x0,y0)为曲线y=f(x)上任一点,
由f′(x)=1+知曲线在点P(x0,y0)处的切线方程为y-y0=(x-x0),
即y-=(x-x0).
令x=0,得y=-,得切线与直线x=0的交点坐标为.
令y=x,得y=x=2x0,得切线与直线y=x的交点坐标为(2x0,2x0).
所以曲线y=f(x)在点P(x0,y0)处的切线与直线x=0,y=x所围成的三角形的面积S=·|2x0|=6.
故曲线y=f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形的面积为定值,且此定值为6.
[B级 难度题——适情自主选做]
1.(2019·蚌埠质检)已知函数f(x)=x,曲线y=f(x)上存在两个不同点,使得曲线在这两点处的切线都与y轴垂直,则实数a的取值范围是( )
A.(-e2,+∞) B.(-e2,0)
C. D.
解析:选D ∵曲线y=f(x)上存在不同的两点,使得曲线在这两点处的切线都与y轴垂直,∴f′(x)=a+(x-1)e-x=0有两个不同的解,即a=(1-x)e-x有两个不同的解.设y=(1-x)e-x,则y′=(x-2)e-x,∴当x<2时,y′<0,当x>2时,y′>0,则y=(1-x)e-x在(-∞,2)上单调递减,在(2,+∞)上单调递增,∴x=2时,函数y取得极小值-e-2.又∵当x>2时总有y=(1-x)e-x<0且f(0)=1>0,∴可得实数a的取值范围是.故选D.
2.(2019·山东名校调研)已知曲线y=ex+a与y=x2恰好存在两条公切线,则实数a的取值范围是( )
A.[2ln 2-2,+∞) B.(2ln 2,+∞)
C.(-∞,2ln 2-2] D.(-∞,2ln 2-2)
解析:选D 由题意可设直线y=kx+b(k>0)为它们的公切线,联立可得x2-kx-b=0,由Δ=0,得k2+4b=0 ①.由y=ex+a求导可得y=ex+a,令ex+a=k,可得x=ln k-a,∴切点坐标为(ln k-a,kln k-ak+b),代入y=ex+a可得k=kln k-ak+b ②.联立①②可得k2+4k+4ak-4kln k=0,化简得4+4a=4ln k-k.令g(k)=4ln k-k,则g′(k)=-1,令g′(k)=0,得k=4,令g′(k)>0,得0<k<4,令g′(k)<0,得k>4.∴g(k)在(0,4)内单调递增,在(4,+∞)内单调递减,∴g(k)max=g(4)=4ln 4-4,且k→0时,g(k)→-∞,k→+∞时,g(k)→-∞.∵有两条公切线,∴方程4+4a=4ln k-k有两解,∴4+4a<4ln 4-4,∴a<2ln 2-2.故选D.