|教案下载
搜索
    上传资料 赚现金
    2021版高考理科数学(北师大版)一轮复习教师用书:第八章 第6讲 空间向量及其运算
    立即下载
    加入资料篮
    2021版高考理科数学(北师大版)一轮复习教师用书:第八章 第6讲 空间向量及其运算01
    2021版高考理科数学(北师大版)一轮复习教师用书:第八章 第6讲 空间向量及其运算02
    2021版高考理科数学(北师大版)一轮复习教师用书:第八章 第6讲 空间向量及其运算03
    还剩24页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021版高考理科数学(北师大版)一轮复习教师用书:第八章 第6讲 空间向量及其运算

    展开
    第6讲 空间向量及其运算



    一、知识梳理
    1.空间向量的有关定理
    (1)共线向量定理:对空间任意两个向量a,b(b≠0),a∥b的充要条件是存在唯一的实数λ,使得a=λb.
    (2)共面向量定理:如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在唯一的有序实数对(x,y),使p=xa+yb.
    (3)空间向量基本定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在有序实数组{x,y,z},使得p=xa+yb+zc.其中{a,b,c}叫做空间的一个基底.
    2.两个向量的数量积(与平面向量基本相同)
    (1)两向量的夹角:已知两个非零向量a,b,在空间中任取一点O,作=a,=b,则∠AOB叫做向量a与b的夹角,记作〈a,b〉.通常规定0≤〈a,b〉≤π.若〈a,b〉=,则称向量a,b互相垂直,记作a⊥b.
    (2)两向量的数量积
    两个非零向量a,b的数量积a·b=|a||b|cos〈a,b〉.
    (3)向量的数量积的性质
    ①a·e=|a|cos〈a,e〉(其中e为单位向量);
    ②a⊥b⇔a·b=0;
    ③|a|2=a·a=a2;
    ④|a·b|≤|a||b|.
    (4)向量的数量积满足如下运算律
    ①(λa)·b=λ(a·b);
    ②a·b=b·a(交换律);
    ③a·(b+c)=a·b+a·c(分配律).
    3.空间向量的坐标运算
    (1)设a=(a1,a2,a3),b=(b1,b2,b3).
    a+b=(a1+b1,a2+b2,a3+b3),
    a-b=(a1-b1,a2-b2,a3-b3),
    λa=(λa1,λa2,λa3),a·b=a1b1+a2b2+a3b3,
    a⊥b⇔a1b1+a2b2+a3b3=0,
    a∥b⇔a1=λb1,a2=λb2,a3=λb3(λ∈R),
    cos〈a,b〉== .
    (2)设A(x1,y1,z1),B(x2,y2,z2),
    则=-=(x2-x1,y2-y1,z2-z1).
    4.直线的方向向量与平面的法向量的确定
    (1)直线的方向向量:l是空间一直线,A,B是直线l上任意两点,则称为直线l的方向向量,与平行的任意非零向量也是直线l的方向向量,显然一条直线的方向向量可以有无数个.
    (2)平面的法向量
    ①定义:与平面垂直的向量,称做平面的法向量.一个平面的法向量有无数多个,任意两个都是共线向量.
    ②确定:设a,b是平面α内两不共线向量,n为平面α的法向量,则求法向量的方程组为
    5.空间位置关系的向量表示

    位置关系
    向量表示
    直线l1,l2的方向向量分别为n1,n2
    l1∥l2
    n1∥n2⇔n1=λn2
    l1⊥l2
    n1⊥n2⇔n1·n2=0
    直线l的方向向量为n,平面α的法向量为m
    l∥α
    n⊥m⇔n·m=0
    l⊥α
    n∥m⇔n=λm
    平面α,β的法向量分别为n,m
    α∥β
    n∥m⇔n=λm
    α⊥β
    n⊥m⇔n·m=0

    常用结论
    1.向量三点共线定理
    在平面中A,B,C三点共线的充要条件是:=x+y(其中x+y=1),O为平面内任意一点.
    2.向量四点共面定理
    在空间中P,A,B,C四点共面的充要条件是:=x+y+z(其中x+y+z=1),O为空间任意一点.
    二、教材衍化
    1.如图所示,在平行六面体ABCD­A1B1C1D1中,M为A1C1与B1D1的交点.若=a,=b,=c,则=________(用a,b,c表示).

    解析:=+=+(-)=c+(b-a)=-a+b+c.
    答案:-a+b+c
    2.正四面体ABCD的棱长为2,E,F分别为BC,AD的中点,则EF的长为________.
    解析:||2=2=(++)2
    =2+2+2+2(·+·+·)
    =12+22+12+2(1×2×cos 120°+0+2×1×cos 120°)
    =2,
    所以||=,所以EF的长为.
    答案:
    3.如图所示,

    在正方体ABCD-A1B1C1D1中,O是底面正方形ABCD的中心,M是D1D的中点,N是A1B1的中点,则直线ON,AM的位置关系是________.
    解析:以D为坐标原点,DA,DC,DD1所在直线分别为x,y,z轴建立空间直角坐标系,设DA=2,则A(2,0,0),M(0,0,1),O(1,1,0),N(2,1,2),所以=(-2,0,1),=(1,0,2),·=-2+0+2=0,所以AM⊥ON.
    答案:垂直

    一、思考辨析
    判断正误(正确的打“√”,错误的打“×”)
    (1)空间中任意两非零向量a,b共面.(  )
    (2)在向量的数量积运算中(a·b)·c=a·(b·c).(  )
    (3)对于非零向量b,由a·b=b·c,则a=c.(  )
    (4)若{a,b,c}是空间的一个基底,则a,b,c中至多有一个零向量.(  )
    (5)两向量夹角的范围与两异面直线所成角的范围相同.(  )
    (6)若A,B,C,D是空间任意四点,则有+++=0.(  )
    答案:(1)√ (2)× (3)× (4)× (5)× (6)√
    二、易错纠偏

    在空间直角坐标系中,已知A(1,2,3),B(-2,-1,6),C(3,2,1),D(4,3,0),则直线AB与CD的位置关系是(  )
    A.垂直         B.平行
    C.异面 D.相交但不垂直
    解析:选B.由题意得,=(-3,-3,3),=(1,1,-1),所以=-3,所以与共线,又AB与CD没有公共点,所以AB∥CD.


          空间向量的线性运算(自主练透)
    1.在空间四边形ABCD中,若=(-3,5,2),=(-7,-1,-4),点E,F分别为线段BC,AD的中点,则的坐标为(  )
    A.(2,3,3) B.(-2,-3,-3)
    C.(5,-2,1) D.(-5,2,-1)
    解析:选B.因为点E,F分别为线段BC,AD的中点,O为坐标原点,所以=-,=(+),=(+).
    所以=(+)-(+)=(+)
    =[(3,-5,-2)+(-7,-1,-4)]
    =(-4,-6,-6)=(-2,-3,-3).
    2.在三棱锥O­ABC中,M,N分别是OA,BC的中点,G是△ABC的重心,用基向量,,表示(1);(2).

    解:(1)=+
    =+
    =+(-)
    =+[(+)-]
    =-++.
    (2)=+
    =-++
    =++.
    3.如图所示,在平行六面体ABCD­A1B1C1D1中,设=a,=b,=c,M,N,P分别是AA1,BC,C1D1的中点,试用a,b,c表示以下各向量:

    (1);(2);(3)+.
    解:(1)因为P是C1D1的中点,
    所以=++=a++
    =a+c+=a+c+b.
    (2)因为N是BC的中点,
    所以=++=-a+b+
    =-a+b+=-a+b+c.
    (3)因为M是AA1的中点,
    所以=+=+
    =-a+
    =a+b+c,
    又=+=+
    =+=c+a,
    所以+=+
    =a+b+c.

    用已知向量表示未知向量的解题策略
    (1)用已知向量来表示未知向量,一定要结合图形,以图形为指导是解题的关键.
    (2)要正确理解向量加法、减法与数乘运算的几何意义.首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量,我们可把这个法则称为向量加法的多边形法则.
    (3)在立体几何中要灵活应用三角形法则,向量加法的平行四边形法则在空间仍然成立. 

          共线、共面向量定理的应用(师生共研)
     如图所示,已知斜三棱柱ABC­A1B1C1,点M,N分别在AC1和BC上,且满足=k,=k(0≤k≤1).
    (1)向量是否与向量,共面?
    (2)直线MN是否与平面ABB1A1平行?

    【解】 (1)因为=k,=k,
    所以=++
    =k++k
    =k(+)+
    =k(+)+
    =k+
    =-k=-k(+)
    =(1-k)-k,
    所以由共面向量定理知向量与向量,共面.
    (2)当k=0时,点M,A重合,点N,B重合,
    MN在平面ABB1A1内,当0 MN不在平面ABB1A1内,
    又由(1)知与,共面,
    所以MN∥平面ABB1A1.

    三点P,A,B共线
    空间四点M,P,A,B共面
    =λ
    =x+y
    对空间任一点O,=+t
    对空间任一点O,=+x+y
    对空间任一点O,=x+(1-x)
    对空间任一点O,=x+y+(1-x-y)
     

    1.已知a=(λ+1,0,2),b=(6,2μ-1,2λ),若a∥b,则λ与μ的值可以是(  )
    A.2, B.-,
    C.-3,2 D.2,2
    解析:选A.因为a∥b,所以b=ka,即(6,2μ-1,2λ)=k(λ+1,0,2),所以解得或
    2.若A(-1,2,3),B(2,1,4),C(m,n,1)三点共线,则m+n=________.
    解析:=(3,-1,1),=(m+1,n-2,-2).
    因为A,B,C三点共线,所以存在实数λ,使得=λ.
    即(m+1,n-2,-2)=λ(3,-1,1)=(3λ,-λ,λ),
    所以,解得λ=-2,m=-7,n=4.所以m+n=-3.
    答案:-3
    3.如图,在四棱柱ABCD­A1B1C1D1中,底面ABCD是平行四边形,E,F,G分别是A1D1,D1D,D1C1的中点.

    (1)试用向量,,表示;
    (2)用向量方法证明平面EFG∥平面AB1C.
    解:(1)设=a,=b,=c.
    由题图得=++
    =c+b+
    =a+b+c
    =++.
    (2)证明:由题图,得=+=a+b,
    =+=b+a=,
    因为EG与AC无公共点,
    所以EG∥AC,因为EG平面AB1C,AC平面AB1C,
    所以EG∥平面AB1C.
    又因为=+=a+c,
    =+=c+a=,
    因为FG与AB1无公共点,所以FG∥AB1,
    因为FG平面AB1C,AB1平面AB1C,
    所以FG∥平面AB1C,
    又因为FG∩EG=G,FG,EG平面EFG,
    所以平面EFG∥平面AB1C.

          空间向量数量积的应用(典例迁移)
    如图所示,已知空间四边形ABCD的每条边和对角线长都等于1,点E,F,G分别是AB,AD,CD的中点,计算:

    (1)·;(2)·.
    【解】 设=a,=b,=c.
    则|a|=|b|=|c|=1,〈a,b〉=〈b,c〉=〈c,a〉=60°,
    (1)==c-a,=-a,
    ·=·(-a)=a2-a·c=.
    (2)·=(++)·(-)
    =·(-)
    =·(-)
    =·(c-a)
    =(-1×1×+1×1×+1+1-1×1×-1×1×)
    =.
    【迁移探究1】 (变问法)在本例条件下,求证EG⊥AB.
    证明:由例题知=(+-)=(b+c-a),
    所以·=(a·b+a·c-a2)
    ==0.
    故⊥,即EG⊥AB.
    【迁移探究2】 (变问法)在本例条件下,求EG的长.
    解:由例题知=-a+b+c,
    ||2=a2+b2+c2-a·b+b·c-c·a=,则||=,即EG的长为.
    【迁移探究3】 (变问法)在本例条件下,求异面直线AG与CE所成角的余弦值.
    解:由例题知=b+c,=+=-b+a,
    cos〈,〉==-,
    由于异面直线所成角的范围是.
    所以异面直线AG与CE所成角的余弦值为.

    空间向量数量积的三个应用
    求夹角
    设向量a,b所成的角为θ,则cos θ=,进而可求两异面直线所成的角
    求长度(距离)
    运用公式|a|2=a·a,可使线段长度的计算问题转化为向量数量积的计算问题
    解决垂直问题
    利用a⊥b⇔a·b=0(a≠0,b≠0),可将垂直问题转化为向量数量积的计算问题
     
     三棱柱ABC­A1B1C1中,M,N分别是A1B,B1C1上的点,且BM=2A1M,C1N=2B1N.设=a,=b,=c.

    (1)试用a,b,c表示向量;
    (2)若∠BAC=90°,∠BAA1=∠CAA1=60°,AB=AC=AA1=1,求MN的长.
    解:(1)由题图知
    =++=++
    =(c-a)+a+(b-a)=a+b+c.
    (2)由题设条件知,
    因为(a+b+c)2=a2+b2+c2+2a·b+2b·c+2a·c
    =1+1+1+0+2×1×1×+2×1×1×=5,
    所以|a+b+c|=,||=|a+b+c|=.

          利用向量证明平行与垂直问题(多维探究)
    角度一 证明平行问题
    (一题多解)如图所示,平面PAD⊥平面ABCD,ABCD为正方形,△PAD是直角三角形,且PA=AD=2,E,F,G分别是线段PA,PD,CD的中点.求证:

    (1)PB∥平面EFG;
    (2)平面EFG∥平面PBC.
    【证明】 (1)因为平面PAD⊥平面ABCD,且ABCD为正方形,所以AB,AP,AD两两垂直.

    以A为坐标原点,建立如图所示的空间直角坐标系,则A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(0,0,1),F(0,1,1),G(1,2,0). 
    法一:=(0,1,0),=(1,2,-1), 
    设平面EFG的法向量为n=(x,y,z),
    则即
    令z=1,则n=(1,0,1)为平面EFG的一个法向量,
    因为=(2,0,-2),
    所以·n=0,所以n⊥,
    因为PB平面EFG,所以PB∥平面EFG.
    法二:=(2,0,-2),=(0,-1,0),=(1,1,-1).
    设=s+t,
    即(2,0,-2)=s(0,-1,0)+t(1,1,-1),
    所以解得s=t=2.所以=2+2,
    又因为与不共线,所以,与共面.
    因为PB平面EFG,所以PB∥平面EFG.
    (2)因为=(0,1,0),=(0,2,0),
    所以=2,
    所以BC∥EF.
    又因为EF平面PBC,BC平面PBC,
    所以EF∥平面PBC,
    同理可证GF∥PC,从而得出GF∥平面PBC.
    又EF∩GF=F,EF平面EFG,GF平面EFG,
    所以平面EFG∥平面PBC.
    角度二 证明垂直问题
    如图,在三棱锥P­ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上.已知BC=8,PO=4,AO=3,OD=2.

    (1)证明:AP⊥BC;
    (2)若点M是线段AP上一点,且AM=3.试证明平面AMC⊥平面BMC.
    【证明】 (1)如图所示,以O为坐标原点,以射线DB方向为x轴正方向,射线OD为y轴正半轴,射线OP为z轴的正半轴建立空间直角坐标系.

    则O(0,0,0),A(0,-3,0),
    B(4,2,0),C(-4,2,0),P(0,0,4).
    于是=(0,3,4),=(-8,0,0),
    所以·=(0,3,4)·(-8,0,0)=0,
    所以⊥,即AP⊥BC.
    (2)由(1)知AP=5,又AM=3,且点M在线段AP上,
    所以==,又=(-4,-5,0),
    所以=+=,
    则·=(0,3,4)·=0,
    所以⊥,即AP⊥BM,
    又根据(1)的结论知AP⊥BC,
    所以AP⊥平面BMC,于是AM⊥平面BMC.
    又AM平面AMC,故平面AMC⊥平面BMC.

    (1)利用空间向量解决平行、垂直问题的一般步骤
    ①建立空间直角坐标系,建系时,要尽可能地利用已知图形中的垂直关系;
    ②建立空间图形与空间向量之间的关系,用空间向量表示出问题中所涉及的点、直线、平面的要素;
    ③通过空间向量的坐标运算研究平行、垂直关系;
    ④根据运算结果解释相关问题.
    (2)空间线面位置关系的坐标表示
    设直线l,m的方向向量分别为a=(a1,b1,c1),b=(a2,b2,c2),平面α,β的法向量分别为u=(a3,b3,c3),v=(a4,b4,c4).
    ①线线平行
    l∥m⇔a∥b⇔a=kb⇔a1=ka2,b1=kb2,c1=kc2.
    ②线线垂直
    l⊥m⇔a⊥b⇔a·b=0⇔a1a2+b1b2+c1c2=0.
    ③线面平行(lα)
    l∥α⇔a⊥u⇔a·u=0⇔a1a3+b1b3+c1c3=0.
    ④线面垂直
    l⊥α⇔a∥u⇔a=ku⇔a1=ka3,b1=kb3,c1=kc3.
    ⑤面面平行
    α∥β⇔u∥v⇔u=kv⇔a3=ka4,b3=kb4,c3=kc4.
    ⑥面面垂直
    α⊥β⇔u⊥v⇔u·v=0⇔a3a4+b3b4+c3c4=0. 
     如图所示,四棱柱ABCD­A1B1C1D1中,底面为平行四边形,以顶点A为端点的三条棱长都为1,且两两夹角为60°.

    (1)求AC1的长;
    (2)求证: AC1⊥BD;
    (3)求BD1与AC夹角的余弦值.
    解:(1)记=a,=b,=c,
    则|a|=|b|=|c|=1,〈a,b〉=〈b,c〉=〈c,a〉=60°,
    所以a·b=b·c=c·a=.
    ||2=(a+b+c)2=a2+b2+c2+2(a·b+b·c+c·a)
    =1+1+1+2×=6,
    所以||=,即AC1的长为.
    (2)证明:因为=a+b+c,=b-a,
    所以·=(a+b+c)·(b-a)
    =a·b+|b|2+b·c-|a|2-a·b-a·c
    =b·c-a·c
    =|b||c|cos 60°-|a||c|cos 60°=0.
    所以⊥,所以AC1⊥BD.
    (3)=b+c-a,=a+b,
    所以||=,||=,
    ·=(b+c-a)·(a+b)
    =b2-a2+a·c+b·c=1.
    所以cos〈,〉==.
    所以AC与BD1夹角的余弦值为.

    [基础题组练]
    1.已知三棱锥O­ABC,点M,N分别为AB,OC的中点,且=a,=b,=c,用a,b,c表示,则等于(  )

    A.(b+c-a)
    B.(a+b+c)
    C.(a-b+c)
    D.(c-a-b)
    解析:选D.=++=(c-a-b).
    2.已知a=(2,1,-3),b=(-1,2,3),c=(7,6,λ),若a,b,c三向量共面,则λ=(  )
    A.9          B.-9
    C.-3 D.3
    解析:选B.由题意知c=xa+yb,即(7,6,λ)=x(2,1,-3)+y(-1,2,3),所以解得λ=-9.
    3.在空间四边形ABCD中,·+·+·=(  )
    A.-1 B.0
    C.1 D.不确定
    解析:选B.如图,

    令=a,=b,=c,
    则·+·+·=a·(c-b)+b·(a-c)+c·(b-a)=a·c-a·b+b·a-b·c+c·b-c·a=0.
    4.如图,在大小为45°的二面角A­EF­D中,四边形ABFE,四边形CDEF都是边长为1的正方形,则B,D两点间的距离是(  )

    A. B.
    C.1 D.
    解析:选D.因为=++,所以||2=||2+||2+||2+2·+2·+2·=1+1+1-=3-,所以||=.
    5.已知A(1,0,0),B(0,-1,1),O为坐标原点,+λ与的夹角为120°,则λ的值为(  )
    A.± B.
    C.- D.±
    解析:选C.+λ=(1,-λ,λ),cos 120°==-,得λ=±.经检验λ=不合题意,舍去,所以λ=-.
    6.如图所示,在长方体ABCD­A1B1C1D1中,O为AC的中点.用,,表示,则=________.

    解析:因为=
    =(+),
    所以=+=(+)+=++.
    答案:++
    7.已知PA垂直于正方形ABCD所在的平面,M,N分别是CD,PC的中点,并且PA=AD=1.在如图所示的空间直角坐标系中,则MN=________.

    解析:连接PD,因为M,N分别为CD,PC的中点,所以MN=PD,又P(0,0,1),D(0,1,0),
    所以PD==,所以MN=.
    答案:
    8.如图所示,已知空间四边形OABC,OB=OC,且∠AOB=∠AOC=,则cos〈,〉的值为________.

    解析:设=a,=b,=c,
    由已知条件得〈a,b〉=〈a,c〉=,且|b|=|c|,
    ·=a·(c-b)=a·c-a·b
    =|a||c|-|a||b|=0,
    所以⊥,
    所以cos〈,〉=0.
    答案:0
    9.如图,在多面体ABC­A1B1C1中,四边形A1ABB1是正方形,AB=AC,BC=AB,B1C1綊BC,二面角A1­AB­C是直二面角.

    求证:(1)A1B1⊥平面AA1C;
    (2)AB1∥平面A1C1C.


    证明:因为二面角A1­AB­C是直二面角,

    四边形A1ABB1为正方形,
    所以AA1⊥平面BAC.
    又因为AB=AC,BC=AB,
    所以∠CAB=90°,
    即CA⊥AB,
    所以AB,AC,AA1两两互相垂直.
    建立如图所示的空间直角坐标系Axyz,
    设AB=2,则A(0,0,0),B1(0,2,2),A1(0,0,2),C(2,0,0),C1(1,1,2).
    (1)=(0,2,0),=(0,0,-2),=(2,0,0),
    设平面AA1C的一个法向量n=(x,y,z),
    则即
    即取y=1,则n=(0,1,0).
    所以=2n,
    即∥n.
    所以A1B1⊥平面AA1C.
    (2)易知=(0,2,2),=(1,1,0),=(2,0,-2),
    设平面A1C1C的一个法向量m=(x1,y1,z1),
    则即
    令x1=1,则y1=-1,z1=1,
    即m=(1,-1,1).
    所以·m=0×1+2×(-1)+2×1=0,
    所以⊥m,
    又AB1平面A1C1C,
    所以AB1∥平面A1C1C.
    10.如图,在底面是矩形的四棱锥P-ABCD中,PA⊥底面ABCD,E,F分别是PC,PD的中点,PA=AB=1,BC=2.求证:

    (1)EF∥平面PAB;
    (2)平面PAD⊥平面PDC.
    证明:以A为原点,AB所在直线为x轴,AD所在直线为y轴,AP所在直线为z轴,建立如图所示的空间直角

    坐标系,则A(0,0,0),B(1,0,0),C(1,2,0),D(0,2,0),P(0,0,1),
    所以E,
    F,=,=(1,0,-1),=(0,2,-1),=(0,0,1),=(0,2,0),=(1,0,0),=(1,0,0).
    (1)因为=-,所以∥,即EF∥AB.
    又AB平面PAB,EF平面PAB,
    所以EF∥平面PAB.
    (2)因为·=(0,0,1)·(1,0,0)=0,
    所以⊥,⊥,
    即AP⊥DC,AD⊥DC.
    又AP∩AD=A,所以DC⊥平面PAD.
    所以平面PAD⊥平面PDC.
    [综合题组练]
    1.已知空间任意一点O和不共线的三点A,B,C,若=x+y+z(x,y,z∈R),则“x=2,y=-3,z=2”是“P,A,B,C四点共面”的(  )
    A.必要不充分条件 B.充分不必要条件
    C.充要条件 D.既不充分也不必要条件
    解析:选B.当x=2,y=-3,z=2时,即=2-3+2.则-=2-3(-)+2(-),即=-3+2,根据共面向量定理知,P,A,B,C四点共面;反之,当P,A,B,C四点共面时,根据共面向量定理,设=m+n(m,n∈R),即-=m(-)+n(-),即=(1-m-n)+m+n,即x=1-m-n,y=m,z=n,这组数显然不止2,-3,2.故“x=2,y=-3,z=2”是“P,A,B,C四点共面”的充分不必要条件.
    2.如图,正方形ABCD与矩形ACEF所在平面互相垂直,AB=,AF=1,M在EF上,且AM∥平面BDE,则M点的坐标为(  )

    A.(1,1,1)
    B.
    C.
    D.
    解析:选C.设M点的坐标为(x,y,1),因为AC∩BD=O,所以O,
    又E(0,0,1),A(,,0),
    所以=,=(x-,y-,1),
    因为AM∥平面BDE,所以∥,
    所以⇒
    所以M点的坐标为.
    3.如图,在正四棱柱ABCD­A1B1C1D1中,AA1=2,AB=BC=1,动点P,Q分别在线段C1D,AC上,则线段PQ长度的最小值是(  )

    A. B.
    C. D.
    解析:选C.设=λ,=μ,(λ,μ∈[0,1]).
    所以=λ(0,1,2)=(0,λ,2λ),
    =+μ(-)=(1,0,0)+μ(-1,1,0)=(1-μ,μ,0).
    所以||=|-|=|(1-μ,μ-λ,-2λ)|

    =≥=,
    当且仅当λ=,μ=,即λ=,μ=时取等号.
    所以线段PQ长度的最小值为.故选C.
    4.在正三棱柱ABC­A1B1C1中,侧棱长为2,底面边长为1,M为BC的中点,=λ,且AB1⊥MN,则λ的值为________.

    解析:如图所示,取B1C1的中点P,连接MP,以,,的方向为x,y,z轴正方向建立空间直角坐标系,
    因为底面边长为1,侧棱长为2,则A,B1(-,0,2),C,C1,
    M(0,0,0),设N,
    因为=λ,所以N,
    所以=,=.
    又因为AB1⊥MN,所以·=0.
    所以-+=0,所以λ=15.
    答案:15
    5.在四棱锥P­ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E,F分别是AB,PB的中点.
    (1)求证:EF⊥CD;
    (2)在平面PAD内是否存在一点G,使GF⊥平面PCB?若存在,求出点G坐标;若不存在,试说明理由.
    解:

    (1)证明:由题意知,DA,DC,DP两两垂直.
    如图,以DA,DC,DP所在直线分别为x轴,y轴,z轴建立空间直角坐标系,设AD=a,
    则D(0,0,0),A(a,0,0),B(a,a,0),C(0,a,0),E,P(0,0,a),F.
    =,=(0,a,0).
    因为·=0,
    所以⊥,从而得EF⊥CD.
    (2)存在.理由如下:假设存在满足条件的点G,
    设G(x,0,z),则=,
    若使GF⊥平面PCB,则由
    ·=·(a,0,0)
    =a=0,得x=;
    由·=·(0,-a,a)=+a=0,得z=0.
    所以G点坐标为,
    故存在满足条件的点G,且点G为AD的中点.
    6.如图,棱柱ABCD­A1B1C1D1的所有棱长都等于2,∠ABC和∠A1AC均为60°,平面AA1C1C⊥平面ABCD.

    (1)求证:BD⊥AA1;
    (2)在直线CC1上是否存在点P,使BP∥平面DA1C1,若存在,求出点P的位置,若不存在,请说明理由.
    解:(1)证明:

    设BD与AC交于点O,则BD⊥AC,连接A1O,在△AA1O中,AA1=2,AO=1,∠A1AO=60°,
    所以A1O2=AA+AO2-2AA1·AOcos 60°=3,
    所以AO2+A1O2=AA,
    所以A1O⊥AO.
    由于平面AA1C1C⊥平面ABCD,且平面AA1C1C∩平面ABCD=AC,A1O平面AA1C1C,所以A1O⊥平面ABCD.以OB,OC,OA1所在直线分别为x轴,y轴,z轴,建立如图所示的空间直角坐标系,则A(0,-1,0),B(,0,0),C(0,1,0),D(-,0,0),A1(0,0,),C1(0,2,).
    由于=(-2,0,0),=(0,1,),
    ·=0×(-2)+1×0+×0=0,
    所以⊥,即BD⊥AA1.
    (2)存在.理由如下:
    假设在直线CC1上存在点P,使BP∥平面DA1C1,
    设=λ,P(x,y,z),则(x,y-1,z)=λ(0,1,).
    从而有P(0,1+λ,λ),=(-,1+λ,λ).
    设平面DA1C1的法向量为n=(x2,y2,z2),

    又=(0,2,0),=(,0,),

    取n=(1,0,-1),
    因为BP∥平面DA1C1,
    则n⊥,即n·=--λ=0,得λ=-1,
    即点P在C1C的延长线上,且C1C=CP.


    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2021版高考理科数学(北师大版)一轮复习教师用书:第八章 第6讲 空间向量及其运算
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map