2021高三数学北师大版(文)一轮教师用书:第8章第2节 空间图形的基本关系与公理
展开第二节 空间图形的基本关系与公理
[最新考纲] 1.理解空间直线、平面位置关系的定义.2.了解可以作为推理依据的公理和定理.3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.
(对应学生用书第125页)
1.空间图形的公理
(1)公理1:过不在一条直线上的三点,有且只有一个平面(即可以确定一个平面).
(2)公理2:如果一条直线上的两点在一个平面内,那么这条直线在此平面内(即直线在平面内).
(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.
(4)公理4:平行于同一条直线的两条直线平行.
2.空间中两直线的位置关系
(1)空间中两直线的位置关系
(2)异面直线所成的角
①定义:过空间任意一点P分别引两条异面直线a,b的平行线l1,l2(a∥l1,b∥l2),这两条相交直线所成的锐角(或直角)就是异面直线a,b所成的角.
②范围:.
(3)定理(等角定理)
空间中,如果两个角的两条边分别对应平行,那么这两个角相等或互补.
3.空间中直线与平面、平面与平面的位置关系
(1)空间中直线与平面的位置关系
位置关系 | 图形表示 | 符号表示 | 公共点 | |
直线a在平面α内 | aα | 有无数个公共点 | ||
直线在平面外 | 直线a与平面α平行 | a∥α | 没有公共点 | |
直线a与平面α斜交 | a∩α=A | 有且只有一个公共点 | ||
直线a与平面α垂直 | a⊥α |
(2)空间中两个平面的位置关系
位置关系 | 图形表示 | 符号表示 | 公共点 | |
两平面平行 | α∥β | 没有公共点 | ||
两平面相交 | 斜交 | α∩β=l | 有一条公共直线 | |
垂直 | α⊥β且 α∩β=a |
1.异面直线的判定定理
经过平面内一点的直线与平面内不经过该点的直线互为异面直线.
2.等角定理的引申
(1)在等角定理中,若两角的两边平行且方向相同或相反,则这两个角相等.
(2)在等角定理中,若两角的两边平行且方向一个边相同,一个边相反,则这两个角互补.
3.唯一性定理
(1)过直线外一点有且只有一条直线与已知直线平行.
(2)过直线外一点有且只有一个平面与已知直线垂直.
(3)过平面外一点有且只有一个平面与已知平面平行.
(4)过平面外一点有且只有一条直线与已知平面垂直.
一、思考辨析(正确的打“√”,错误的打“×”)
(1)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线. ( )
(2)两两相交的三条直线最多可以确定三个平面. ( )
(3)如果两个平面有三个公共点,则这两个平面重合. ( )
(4)没有公共点的两条直线是异面直线. ( )
[答案](1)× (2)√ (3)× (4)×
二、教材改编
1.下列命题正确的是( )
A.经过三点确定一个平面
B.经过一条直线和一个点确定一个平面
C.四边形确定一个平面
D.两两相交且不共点的三条直线确定一个平面
D [根据确定平面的公理和推论知选项D正确.]
2.若直线a不平行于平面α,且aα,则下列结论成立的是( )
A.平面α内的所有直线与a异面
B.平面α内不存在与a平行的直线
C.平面α内存在唯一的直线与a平行
D.平面α内的直线与a都相交
B [由题意知直线a与平面α相交,则平面α内不存在与a平行的直线,故选B.]
3.如图所示,在正方体ABCDA1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C与EF所成的角的大小为( )
A.30° B.45°
C.60° D.90°
C [连接B1D1,D1C(图略),则B1D1∥EF,故∠D1B1C为所求的角,又B1D1=B1C=D1C,
∴∠D1B1C=60°.]
4.如图,在三棱锥ABCD中,E,F,G,H分别是棱AB,BC,CD,DA的中点,则
(1)当AC,BD满足条件________时,四边形EFGH为菱形;
(2)当AC,BD满足条件________时,四边形EFGH为正方形.
(1)AC=BD (2)AC=BD且AC⊥BD [(1)若四边形EFGH为菱形,
则EF=EH,∵EFAC,EHBD,
∴AC=BD.
(2)若四边形EFGH为正方形,
则EF=EH且EF⊥EH,
∵EFAC,EHBD,
∴AC=BD且AC⊥BD.]
(对应学生用书第126页)
⊙考点1 平面基本性质的应用
共点、共线、共面问题的证明方法
(1)证明点共线问题:①公理法:先找出两个平面,然后证明这些点都是这两个平面的公共点,再根据基本公理3证明这些点都在交线上;②同一法:选择其中两点确定一条直线,然后证明其余点也在该直线上.
(2)证明线共点问题:先证两条直线交于一点,再证明第三条直线经过该点.
(3)证明点、直线共面问题:①纳入平面法:先确定一个平面,再证明有关点、线在此平面内;②辅助平面法:先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α,β重合.
(1)以下命题中,正确命题的个数是( )
①不共面的四点中,其中任意三点不共线;
②若点A,B,C,D共面,点A,B,C,E共面,则A,B,C,D,E共面;
③若直线a,b共面,直线a,c共面,则直线b,c共面;
④依次首尾相接的四条线段必共面.
A.0 B.1
C.2 D.3
(2)如图,正方体ABCDA1B1C1D1中,E,F分别是AB和AA1的中点.求证:
①E,C,D1,F四点共面;
②CE,D1F,DA三线共点.
(1)B [①正确,可以用反证法证明,假设任意三点共线,则四个点必共面,与不共面的四点矛盾;②中若点A,B,C在同一条直线上,则A,B,C,D,E不一定共面,故②错误;③中,直线b,c可能是异面直线,故③错误;④中,当四条线段构成空间四边形时,四条线段不共面,故④错误.]
(2)[证明] ①如图,连接EF,CD1,A1B.
∵E,F分别是AB,AA1的中点,
∴EF∥BA1.
又∵A1B∥D1C,∴EF∥CD1,
∴E,C,D1,F四点共面.
②∵EF∥CD1,EF<CD1,
∴CE与D1F必相交,设交点为P,
则由P∈直线CE,CE平面ABCD,
得P∈平面ABCD.
同理P∈平面ADD1A1.
又平面ABCD∩平面ADD1A1=DA,
∴P∈直线DA,∴CE,D1F,DA三线共点.
证明两条直线平行比证明两条直线相交容易,因此证明四点共面问题时,一般是证明四点所在的两条直线平行.
1.如图是正方体或四面体,P,Q,R,S分别是所在棱的中点,则这四个点不共面的一个图是 ( )
A B C D
D [根据异面直线的判定定理,选项D中PS与QR是异面直线,则四点P,Q,R,S不共面.故选D.]
2.如图,在正方体ABCDA1B1C1D1中,O为正方形ABCD的中心,H为直线B1D与平面ACD1的交点.求证:D1,H,O三点共线.
[证明] 如图,连接BD,B1D1,
则BD∩AC=O,
因为BB1DD1,
所以四边形BB1D1D为平行四边形,
又H∈B1D,
B1D平面BB1D1D,
则H∈平面BB1D1D,
因为平面ACD1∩平面BB1D1D=OD1,
所以H∈OD1.
即D1,H,O三点共线.
⊙考点2 空间两条直线的位置关系
(1)已知a,b,c为三条不同的直线,且a平面α,b平面β,α∩β=c,给出下列命题:
①若a与b是异面直线,则c至少与a,b中的一条相交;
②若a不垂直于c,则a与b一定不垂直;
③若a∥b,则必有a∥c.
其中真命题有________.(填序号)
(2)如图,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有________(填上所有正确答案的序号).
① ② ③ ④
(1)①③ (2)②④ [(1)对于①,若c与a,b都不相交,则c∥a,c∥b,从而a∥b,这与a与b是异面直线矛盾,故①正确.
对于②,a与b可能异面垂直,故②错误.
对于③,由a∥b可知a∥β,又α∩β=c,从而a∥c,故③正确.
(2)图①中,直线GH∥MN;图②中,G,H,N三点共面,但M∉平面GHN,因此直线GH与MN异面;图③中,连接MG(图略),GM∥HN,因此GH与MN共面;图④中,G,M,N共面,但H∉平面GMN,因此GH与MN异面,所以在图②④中,GH与MN异面.]
一些否定性命题不易判断,可从其反面入手.反面成立,则此命题是假命题.如本例T(1),T(2).
[教师备选例题]
如图,在正方体ABCDA1B1C1D1中,点E,F分别在A1D,AC上,且A1E=2ED,CF=2FA,则EF与BD1的位置关系是( )
A.相交但不垂直
B.相交且垂直
C.异面
D.平行
D [连接D1E并延长,与AD交于点M,由A1E=2ED,可得M为AD的中点,
连接BF并延长,交AD于点N,因为CF=2FA,可得N为AD的中点,所以M,N重合,所以EF和BD1共面,且=,=,所以=,所以EF∥BD1,故选D.]
1.下列结论中正确的是 ( )
①在空间中,若两条直线不相交,则它们一定平行;②与同一直线都相交的三条平行线在同一平面内;③一条直线与两条平行直线中的一条相交,那么它也与另一条相交;④空间四条直线a,b,c,d,如果a∥b,c∥d,且a∥d,那么b∥c.
A.①②③ B.②④
C.③④ D.②③
B [①错,两条直线不相交,则它们可能平行,也可能异面;②显然正确;③错,若一条直线和两条平行直线中的一条相交,则它和另一条直线可能相交,也可能异面;④由平行直线的传递性可知正确.故选B.]
2.如图,在正方体ABCDA1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:
①直线AM与CC1是相交直线;
②直线AM与BN是平行直线;
③直线BN与MB1是异面直线;
④直线AM与DD1是异面直线.
其中正确结论的序号为________.
③④ [直线AM与CC1是异面直线,直线AM与BN也是异面直线,所以①②错误.点B,B1,N在平面BB1C1C中,点M在此平面外,所以BN,MB1是异面直线.同理AM,DD1也是异面直线.]
⊙考点3 两条异面直线所成的角
平移法求异面直线所成角的步骤
平移 | 平移的方法一般有三种类型:(1)利用图中已有的平行线平移;(2)利用特殊点(线段的端点或中点)作平行线平移;(3)补形平移(一作) |
证明 | 证明所作的角是异面直线所成的角或其补角(二证) |
计算 | 在立体图形中,寻找或作出含有此角的三角形,并解之(三计算) |
取舍 | 因为异面直线所成角θ的取值范围是0°<θ≤90°,所以所作的角为钝角时,应取它的补角作为异面直线所成的角(四取舍) |
(1)(2018·全国卷Ⅱ)在正方体ABCDA1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD所成角的正切值为( )
A. B. C. D.
(2)(2019·成都模拟)在我国古代数学名著《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑.如图,在鳖臑ABCD中,AB⊥平面BCD,且AB=BC=CD,则异面直线AC与BD所成角的余弦值为( )
A. B.-
C. D.-
(1)C (2)A [(1)如图,连接BE,
因为AB∥CD,所以异面直线AE与CD所成的角等于相交直线AE与AB所成的角,即∠EAB.不妨设正方体的棱长为2,则CE=1,BC=2,由勾股定理得BE=.又由AB⊥平面BCC1B1可得AB⊥BE,所以tan∠EAB==.故选C.
(2)如图,分别取AB,AD,BC,BD的中点E,F,G,O,连接EF,EG,OG,FO,FG,则EF∥BD,EG∥AC,所以∠FEG为异面直线AC与BD所成的角.易知FO∥AB,因为AB⊥平面BCD,所以FO⊥平面BCD,所以FO⊥OG,设AB=2a,则EG=EF=a,FG==a,所以∠FEG=60°,所以异面直线AC与BD所成角的余弦值为,故选A.]
平移法作异面直线所成的角时,利用平行四边形或三角形的中位线是常用的方法.
1.如图,在长方体ABCDA1B1C1D1中,AB=2,BC=1,BB1=1,P是AB的中点,则异面直线BC1与PD所成的角等于( )
A.30° B.45°
C.60° D.90°
C [取CD的中点Q,连接BQ,C1Q,
∵P是AB的中点,
∴BQ∥PD,
∴∠C1BQ是异面直线BC1与PD所成的角.
在△C1BQ中,C1B=BQ=C1Q=,∴∠C1BQ=60°,
即异面直线BC1与PD所成的角等于60°,故选C.]
2.(2017·全国卷Ⅱ)已知直三棱柱ABCA1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为( )
A. B.
C. D.
C [将直三棱柱ABCA1B1C1补形为直四棱柱ABCDA1B1C1D1,如图所示,连接AD1,B1D1,BD.
由题意知∠ABC=120°,AB=2,BC=CC1=1,
所以AD1=BC1=,AB1=,∠DAB=60°.
在△ABD中,由余弦定理知BD2=22+12-2×2×1×cos 60°=3,所以BD=,所以B1D1=.
又AB1与AD1所成的角即为AB1与BC1所成的角θ,
所以cos θ===.
故选C.]