初中数学人教版九年级下册28.1 锐角三角函数教学设计
展开课题
28.1.1锐角三角函数——正弦
课 型
新授课
课 时
1
教学
目标
理解锐角三角函数的定义,掌握锐角三角函数的表示法;
能根据锐角三角函数的定义计算一个锐角的各个三角函数的值;
掌握Rt△中的锐角三角函数的表示:
sinA=, csA=,tanA=
4、掌握锐角三角函数的取值范围;
5、通过经历三角函数概念的形成过程,培养学生从特殊到一般及数形结合的思想方法。
教 学
重 点
难 点
教学重点:
锐角三角函数相关定义的理解及根据定义计算锐角三角函数的值。
教学难点:
锐角三角函数概念的形成。
教 学
准 备
多媒体
教
学
过
程
一、复习旧知、引入新课
【引入】操场里有一个旗杆,老师让小明去测量旗杆高度。(演示学校操场上的国旗图片)
小明站在离旗杆底部10米远处,目测旗杆的顶部,视线与水平线的夹角为34度,并已知目高为1米.然后他很快就算出旗杆的高度了。
你想知道小明怎样算出的吗?
下面我们大家一起来学习锐角三角函数中的第一种:锐角的正弦
二、探索新知、分类应用
【活动一】问题的引入
【问题一】为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行灌溉。现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m,那么需要准备多长的水管?
分析:
问题转化为,在Rt△ABC中,∠C=90°,∠A=30°,BC=35m,求AB
根据“再直角三角形中,30°角所对的边等于斜边的一半”,即
可得AB=2BC=70m.即需要准备70m长的水管
结论:在一个直角三角形中,如果一个锐角等于30°,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于
【问题二】如图,任意画一个Rt△ABC,使∠C=90°,∠A=45°,计算∠A的对边与斜边的比,能得到什么结论?(学生思考)
结论:在一个直角三角形中,如果一个锐角等于45,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于。
【问题三】一般地,当∠A取其他一定度数的锐角时,它的对边与斜边的比是否也是一个固定值?
如图:Rt△ABC和Rt△A′B′C′,∠C=∠C′=90,∠A=∠A′=α,那么有什么关系?
分析:由于∠C=∠C′=90,∠A=∠A′=α,所以Rt△ABC∽Rt△A′B′C′,,即
结论:在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,∠A的对边与斜边的比也是一个固定值。
【活动二】认识正弦
如图,在Rt△ABC中,∠A、∠B、∠C所对的边分别记为a、b、c。
师:在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的正弦。记作sinA。
板书:sinA= (举例说明:若a=1,c=3,则sinA=)
【注意】:1、sinA不是 sin与A的乘积,而是一个整体;
2、正弦的三种表示方式:sinA、sin56°、sin∠DEF
3、sinA 是线段之间的一个比值;sinA 没有单位。
提问:∠B的正弦怎么表示?要求一个锐角的正弦值,我们需要知道直角三角形中的哪些边?
【活动三】正弦简单应用
例1 如课本图28.1-5,在Rt△ABC中,∠C=90°,求sinA和sinB的值.
教师对题目进行分析:求sinA就是要确定∠A的对边与斜边的比;求sinB就是要确定∠B的对边与斜边的比.我们已经知道了∠A对边的值,所以解题时应先求斜边的高.
作 业
布 置
完成同步练习
课堂总结
在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,∠A的对边与斜边的比都是一个固定值.
在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的正弦,记作sinA。
初中数学人教版九年级下册28.1 锐角三角函数教案设计: 这是一份初中数学人教版九年级下册28.1 锐角三角函数教案设计,共3页。教案主要包含了师生互动,点导评析,监测反馈等内容,欢迎下载使用。
初中数学人教版九年级下册第二十八章 锐角三角函数28.1 锐角三角函数教学设计: 这是一份初中数学人教版九年级下册第二十八章 锐角三角函数28.1 锐角三角函数教学设计,共5页。
人教版九年级下册28.1 锐角三角函数教学设计: 这是一份人教版九年级下册28.1 锐角三角函数教学设计,共4页。教案主要包含了复习旧知,探索新知,总结消化,书写作业,教学后记等内容,欢迎下载使用。