所属成套资源:2021年中考数学一轮 单元复习(全套)()
中考精选2021年中考数学一轮单元复习18 平行四边形(含答案) 试卷
展开
中考精选2021年中考数学一轮单元复习18 平行四边形一 、选择题1.如图,在▱ABCD中,全等三角形的对数共有( )A.2对 B.3对 C.4对 D.5对 2.如图,□ABCD的周长是22㎝,△ABC的周长是17㎝,则AC的长为( )A.5cm; B.6cm; C.7cm; D.8cm; 3.下列给出的条件中,不能判断四边形ABCD是平行四边形的是( ) A.AB∥CD,AD=BC B.∠A=∠C,∠B=∠D C.AB∥CD,AD∥BC D.AB=CD,AD=BC 4.菱形不具备的性质是( )A.是轴对称图形 B.是中心对称图形C.对角线互相垂直 D.对角线一定相等 5.如图,在菱形ABCD中,AB的垂直平分线EF交对角线AC于点F,垂足为点E,连接DF,且∠CDF=24°,则∠DAB等于( ) A.100° B.104° C.105° D.110°6.如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是( ) A.△AFD≌△DCE B.AF=AD C.AB=AF D.BE=AD﹣DF 7.如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为( ) A.30° B.45° C.60° D.75° 8.如图是一张矩形纸片ABCD,AD=10cm,若将纸片沿DE折叠,使DC落在DA上,点C的对应点为点F,若BE=6cm,则CD=( ) A.4cm B.6cm C.8cm D.10cm 9.如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长为2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为 ( )A.3a+2b B.3a+4b C.6a+2b D.6a+4b 10.已知一个无盖长方体的底面是边长为1的正方形,侧面是长为2的长方形,现展开铺平.如图,依次连结点A,B,C,D得到一个正方形,将周围的四个长方形沿虚线剪去一个直角三角形,则所剪得的直角三角形较短直角边与较长直角边的比是( ) A. B. C. D. 二 、填空题11.如图,平行四边形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件 使其成为菱形(只填一个即可).12.如图,在平行四边形ABCD中,点E在BC边上,且CE:BC=2:3,AC与DE相交于点F,若S△AFD=9,则S△EFC= . 13.如图所示,在菱形ABCD中,AE垂直平分BC,垂足为E,AB=4 cm.那么,菱形ABCD的面积是________,对角线BD的长是________. 14.如图是叠放在一起的两张长方形卡片,图中有∠1、∠2、∠3,则其中一定相等的是_____ 15.如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是 .16.如图放置的两个正方形的边长分别为4和8,点G为CF中点,则AG的长为___________. 三 、解答题17.已知平行四边形ABCD中,CE平分∠BCD且交AD于点E,AF∥CE,且交BC于点F.(1)求证:△ABF≌△CDE;(2)如图,若∠1=65°,求∠B的大小. 18.如图,四边形ABCD是平行四边形,E、F是对角线AC上的两点,∠1=∠2.(1)求证:AE=CF;(2)求证:四边形EBFD是平行四边形. 19.如图,已知在矩形ABCD中,E、F分别是边BC、AB上的点,且EF=ED,EF⊥ED. 求证:AE平分∠BAD. 20.如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BC相交于点N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求MD的长. 21.如图,ABCD是正方形,E是CD边上任意一点,连接AE,作BF⊥AE,DG⊥AE,垂足分别为F,G.求证:BF﹣DG=FG. 22.如图,已知:正方形ABCD,由顶点A引两条射线分别交BC、CD于E、F,且∠EAF=45°,求证:BE+DF=EF.
参考答案1.答案为:C.2.B; 3.A4.答案为:D; 5.B6.B7.C8.A9.答案为:A10.C.11.答案为:AC⊥BC或∠AOB=90°或AB=BC 12.答案为:4; 13.答案为:8cm2;4cm; 14.答案为:∠2=∠3 15.答案为:45°.16.答案为:;17.(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∠B=∠D,∴∠1=∠DCE,∵AF∥CE,∴∠AFB=∠ECB,∵CE平分∠BCD,∴∠DCE=∠ECB,∴∠AFB=∠1,在△ABF和△CDE中,,∴△ABF≌△CDE(AAS);(2)解:由(1)得:∠1=∠ECB,∠DCE=∠ECB,∴∠1=∠DCE=65°,X∴1 .∠B=∠D=180°﹣2×65°=50°. 18.略19.提示:证明△BFE≌△CED,从而BE=DC=AB,∴∠BAE=45°,可得AE平分∠BAD 20. (1)证明:∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠MDO=∠NBO,∠DMO=∠BNO,∵在△DMO和△BNO中,,∴△DMO≌△BNO(AAS),∴OM=ON,∵OB=OD,∴四边形BMDN是平行四边形,∵MN⊥BD,∴平行四边形BMDN是菱形.(2)解:∵四边形BMDN是菱形,∴MB=MD,设MD长为x,则MB=DM=x,在Rt△AMB中,BM2=AM2+AB2即x2=(8﹣x)2+42,解得:x=5,所以MD长为5.21.证明:∵四边形ABCD是正方形,∴AB=AD,∠DAB=90°,∵BF⊥AE,DG⊥AE,∴∠AFB=∠AGD=∠ADG+∠DAG=90°,∵∠DAG+∠BAF=90°,∴∠ADG=∠BAF,在△BAF和△ADG中,∵,∴△BAF≌△ADG(AAS),∴BF=AG,AF=DG,∵AG=AF+FG,∴BF=AG=DG+FG,∴BF﹣DG=FG. 22.证明:如图,延长CD到G,使DG=BE,在正方形ABCD中,AB=AD,∠B=∠ADC=90°,∴∠ADG=∠B,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AG=AE,∠DAG=∠BAE,∵∠EAF=45°,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=90°﹣45°=45°,∴∠EAF=∠GAF,在△AEF和△AGF中,,∴△AEF≌△AGF(SAS),∴EF=GF,∵GF=DG+DF=BE+DF,∴BE+DF=EF.