2021高考数学一轮复习统考第11章概率第1讲随机事件的概率学案含解析北师大版
展开第十一章 概率
第1讲 随机事件的概率
基础知识整合
1.概率
(1)在相同条件下,大量重复进行同一试验时,随机事件A发生的频率会在某个常数附近摆动,即随机事件A发生的频率具有稳定性.我们把这个常数叫做随机事件A的概率,记作P(A).
(2)频率反映了一个随机事件出现的频繁程度,但频率是随机的,而概率是一个确定的值,因此,人们用概率来反映随机事件发生的可能性的大小,有时也用频率作为随机事件概率的估计值.
(3)概率的几个基本性质
①概率的取值范围:0≤P(A)≤1.
②必然事件的概率:P(A)=1.
③不可能事件的概率:P(A)=0.
④概率的加法公式
如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B).
⑤对立事件的概率
若事件A与事件B互为对立事件,则A∪B为必然事件.P(A∪B)=1,P(A)=1-P(B).
2.事件的关系与运算
名称 | 定义 | 符号表示 |
包含 关系 | 若事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B) | B⊇A (或A⊆B) |
相等关系 | 若B⊇A,且A⊇B,则称事件A与事件B相等 | A=B |
并事件 (和事件) | 若某事件发生当且仅当事件A发生或事件B发生,则称此事件为事件A与事件B的并事件(或和事件) | A∪B (或A+B) |
交事件 (积事件) | 若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件) | A∩B (或AB) |
互斥 事件 | 若A∩B为不可能事件,则称事件A与事件B互斥 | A∩B=∅ |
对立 事件 | 若A∩B为不可能事件,A∪B为必然事件,则称事件A与事件B互为对立事件 | A∩B=∅ 且A∪B=Ω |
1.从集合的角度理解互斥事件和对立事件
(1)几个事件彼此互斥,是指由各个事件所含的结果组成的集合的交集为空集.
(2)事件A的对立事件所含的结果组成的集合,是全集中由事件A所含的结果组成的集合的补集.
2.概率加法公式的推广
当一个事件包含多个结果且各个结果彼此互斥时,要用到概率加法公式的推广,即
P(A1∪A2∪…∪An)=P(A1)+P(A2)+…+P(An).
1.围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为,都是白子的概率是,则从中任意取出2粒恰好是同一色的概率是( )
A. B.
C. D.1
答案 C
解析 设“从中任意取出2粒都是黑子”为事件A,“从中任意取出2粒都是白子”为事件B,“从中任意取出2粒恰好是同一色”为事件C,则C=A∪B,且事件A与B互斥,所以P(C)=P(A)+P(B)=+=.
即从中任意取出2粒恰好是同一色的概率是.
2.(2020·宁夏固原检测)抽查10件产品,设事件A为“至少有2件次品”,则事件A的对立事件为( )
A.至多有2件次品 B.至多有1件次品
C.至多有2件正品 D.至少有2件正品
答案 B
解析 ∵“至少有n个”的反面是“至多有n-1个”,又事件A“至少有2件次品”,∴事件A的对立事件为“至多有1件次品”.
3.某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛,事件“至少有一名女生”与事件“全是男生”( )
A.是互斥事件,不是对立事件
B.是对立事件,不是互斥事件
C.既是互斥事件,也是对立事件
D.既不是互斥事件,也不是对立事件
答案 C
解析 “至少有一名女生”包括“一男一女”和“两名女生”两种情况,这两种情况加上“全是男生”构成全部基本事件,且不能同时发生,故事件“至少有一名女生”与事件“全是男生”互为对立事件,且是互斥事件,故选C.
4.某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是0.05和0.03,则抽检一件是正品(甲级品)的概率为( )
A.0.95 B.0.97
C.0.92 D.0.08
答案 C
解析 记抽检的产品是甲级品为事件A,是乙级品为事件B,是丙级品为事件C,这三个事件彼此互斥,因此所求概率为P(A)=1-P(B)-P(C)=1-0.05-0.03=0.92.
5.一个地区从某年起几年之内的新生婴儿数及其中的男婴数如下:
时间范围 | 1年内 | 2年内 | 3年内 | 4年内 |
新生婴儿数n | 5544 | 9607 | 13520 | 17190 |
男婴数m | 2883 | 4970 | 6994 | 8892 |
则这一地区男婴出生的概率约是________(保留四位小数).
答案 0.5173
解析 男婴出生的频率依次约是:0.5200,0.5173,0.5173,0.5173.由于这些频率非常接近0.5173,因此这一地区男婴出生的概率约是0.5173.
6.在一次班级聚会上,某班到会的女同学比男同学多6人,从这些同学中随机挑选一人表演节目.若选到女同学的概率为,则这班参加聚会的同学的人数为________.
答案 18
解析 设该班到会的女同学有x人,则该班到会的共有(2x-6)人,所以=,解得x=12,故该班参加聚会的同学有18人.
核心考向突破
考向一 事件的概念
例1 从6件正品与3件次品中任取3件,观察正品件数与次品件数,判断下列每对事件是不是互斥事件;如果是,再判断它们是不是对立事件.
(1)“恰好有1件次品”和“恰好有2件次品”;
(2)“至少有1件次品”和“全是次品”;
(3)“至少有2件次品”和“至多有1件次品”.
解 从6件正品与3件次品中任取3件,共有4种情况:①3件全是正品;②2件正品1件次品;③1件正品2件次品;④全是次品.
(1)“恰好有1件次品”即“2件正品1件次品”;“恰好有2件次品”即“1件正品2件次品”,它们是互斥事件但不是对立事件.
(2)“至少有1件次品”包括“2件正品1件次品”“1件正品2件次品”“全是次品”3种情况,它与“全是次品”既不是互斥事件也不是对立事件.
(3)“至少有2件次品”包括”1件正品2件次品”“全是次品”2种情况;“至多有1件次品”包括“2件正品1件次品”“全是正品”2种情况,它们既是互斥事件也是对立事件.
1.准确把握互斥事件与对立事件
(1)互斥事件是不可能同时发生的事件,但可同时不发生.
(2)对立事件是特殊的互斥事件,特殊在对立的两个事件不可能都不发生,即有且仅有一个发生.
2.判别互斥、对立事件的方法
判别互斥、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两事件为对立事件,对立事件一定是互斥事件.
[即时训练] 1.(2019·湖北十市联考)从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是( )
A.“至少有一个黑球”与“都是黑球”
B.“至少有一个黑球”与“都是红球”
C.“至少有一个黑球”与“至少有一个红球”
D.“恰有一个黑球”与“恰有两个黑球”
答案 D
解析 A中的两个事件是包含关系,不是互斥事件;B中的两个事件是对立事件;C中的两个事件都包含“一个黑球一个红球”的事件,不是互斥关系;D中的两个事件是互斥而不对立的关系.
考向二 随机事件的概率与频率
例2 (2019·北京高考)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:
支付金额 支付方式 | 不大于2000元 | 大于2000元 |
仅使用A | 27人 | 3人 |
仅使用B | 24人 | 1人 |
(1)估计该校学生中上个月A,B两种支付方式都使用的人数;
(2)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率;
(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2000元.结合(2)的结果,能否认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化?说明理由.
解 (1)由题知,样本中仅使用A的学生有27+3=30(人),仅使用B的学生有24+1=25(人),A,B两种支付方式都不使用的学生有5人.
故样本中A,B两种支付方式都使用的学生有100-30-25-5=40(人).
所以估计该校学生中上个月A,B两种支付方式都使用的人数为×1000=400.
(2)记事件C为“从样本仅使用B的学生中随机抽取1人,该学生上个月的支付金额大于2000元”,则
P(C)==0.04.
所以从样本仅使用B的学生中随机抽取1人,该学生上个月支付金额大于2000元的概率为0.04.
(3)记事件E为“从样本仅使用B的学生中随机抽查1人,该学生本月的支付金额大于2000元”.
假设样本仅使用B的学生中,本月支付金额大于2000元的人数没有变化,则由(2)知,P(E)=0.04.
答案示例1:可以认为有变化.理由如下:
P(E)比较小,概率比较小的事件一般不容易发生,一旦发生,就有理由认为本月支付金额大于2000元的人数发生了变化.所以可以认为有变化.
答案示例2:无法确定有没有变化.理由如下:
事件E是随机事件,P(E)比较小,一般不容易发生,但还是有可能发生的.所以无法确定有没有变化.
1.概率与频率的关系
频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来描述随机事件发生的可能性的大小,有时也用频率作为随机事件概率的估计值.
2.随机事件概率的求法
利用概率的统计定义可求事件的概率,即通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数,这个常数就是概率.
[即时训练] 2.(2018·北京高考)电影公司随机收集了电影的有关数据,经分类整理得到下表:
电影类型 | 第一类 | 第二类 | 第三类 | 第四类 | 第五类 | 第六类 |
电影部数 | 140 | 50 | 300 | 200 | 800 | 510 |
好评率 | 0.4 | 0.2 | 0.15 | 0.25 | 0.2 | 0.1 |
好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.
(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;
(2)随机选取1部电影,估计这部电影没有获得好评的概率;
(3)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)
解 (1)由题意,知样本中电影的总部数是140+50+300+200+800+510=2000.
第四类电影中获得好评的电影部数是200×0.25=50,
故所求概率为=0.025.
(2)设“随机选取1部电影,这部电影没有获得好评”为事件B.
没有获得好评的电影共有140×0.6+50×0.8+300×0.85+200×0.75+800×0.8+510×0.9=1628(部).
由古典概型的概率公式,得P(B)==0.814.
(3)增加第五类电影的好评率,减少第二类电影的好评率.
精准设计考向,多角度探究突破
考向三 互斥、对立事件的概率
角度 互斥事件的概率
例3 (2019·唐山模拟)某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:
赔付金额(元) | 0 | 1000 | 2000 | 3000 | 4000 |
车辆数(辆) | 500 | 130 | 100 | 150 | 120 |
(1)若每辆车的投保金额均为2800元,估计赔付金额大于投保金额的概率;
(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.
解 (1)设A表示事件“赔付金额为3000元”,B表示事件“赔付金额为4000元”,以频率估计概率,得
P(A)==0.15,P(B)==0.12.
由于投保金额为2800元,赔付金额大于投保金额对应的情形是3000元和4000元,
所以其概率为P(A)+P(B)=0.15+0.12=0.27.
(2)设C表示事件“投保车辆中新司机获赔4000元”.
由已知,样本车辆中车主为新司机的有0.1×1000=100(辆),而赔付金额为4000元的车辆中,车主为新司机的有0.2×120=24(辆),
所以样本车辆中新司机车主获赔金额为4000元的频率为=0.24,
由频率估计概率,得P(C)=0.24.
角度 对立事件的概率
例4 (2020·扬州摸底)某超市为了了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.
一次购物量 | 1至4件 | 5至8件 | 9至 12件 | 13至 16件 | 17件 及以上 |
顾客数(人) | x | 30 | 25 | y | 10 |
结算时间 (分钟/人) | 1 | 1.5 | 2 | 2.5 | 3 |
已知这100位顾客中一次购物量超过8件的顾客占55%.
(1)确定x,y的值,并估计顾客一次购物的结算时间的平均值;
(2)求一位顾客一次购物的结算时间不超过2分钟的概率(将频率视为概率).
解 (1)由已知,得25+y+10=55,x+30=45,
所以x=15,y=20.
该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为=1.9(分钟).
(2)记A为事件“一位顾客一次购物的结算时间不超过2分钟”,A1,A2分别表示事件“该顾客一次购物的结算时间为2.5分钟”,“该顾客一次购物的结算时间为3分钟”,将频率视为概率得P(A1)==,P(A2)==.
P(A)=1-P(A1)-P(A2)=1--=.
故一位顾客一次购物的结算时间不超过2分钟的概率为.
求复杂的互斥事件的概率的一般方法
(1)直接法:将所求事件的概率分解为一些彼此互斥的事件的概率的和,运用互斥事件的概率求和公式计算.
(2)间接法:先求此事件的对立事件的概率,再用公式P(A)=1-P(),即运用逆向思维,特别是“至少”“至多”型题目,用间接法就显得较简便.
[即时训练] 3.某商场有奖销售中,购满100元商品得1张奖券,多购多得,1000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求:
(1)P(A),P(B),P(C);
(2)1张奖券的中奖概率;
(3)1张奖券不中特等奖且不中一等奖的概率.
解 (1)P(A)=,P(B)==,P(C)==.
(2)1张奖券中奖包含中特等奖、一等奖、二等奖.
设“1张奖券中奖”这个事件为M,则M=A∪B∪C.
∵A,B,C两两互斥,
∴P(M)=P(A∪B∪C)=P(A)+P(B)+P(C)=++=.故1张奖券的中奖概率为.
(3)设“1张奖券不中特等奖且不中一等奖”为事件N,则事件N与“1张奖券中特等奖或中一等奖”为对立事件,P(N)=1-P(A∪B)=1-=.
故1张奖券不中特等奖且不中一等奖的概率为.
(2019·河南洛阳联考)某售报亭每天以每份0.6元的价格从报社购进若干份报纸,然后以每份1元的价格出售,如果当天卖不完,剩下的报纸以每份0.1元的价格卖给废品收购站.
(1)若售报亭一天购进280份报纸,求当天的利润y(单位:元)关于当天需求量x(单位:份)的函数关系式;
(2)售报亭记录了100天报纸的日需求量,整理得下表:
日需求量x/份 | 240 | 250 | 260 | 270 | 280 | 290 | 300 |
频数 | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
①假设售报亭在这100天内每天都购进了280份报纸,求这100天的日平均利润;
②若某天售报亭购进了280份报纸,以这100天记录的各需求量的频率作为概率,求当天的利润不超过100元的概率.
解 (1)当x≥280且x∈N*时,y=280×(1-0.6)=112;
当x<280且x∈N*时,y=(1-0.6)x-0.5×(280-x)=0.9x-140.
综上,y=
(2)①由(1)得这100天中,日利润为76元的有10天,日利润为85元的有20天,日利润为94元的有16天,日利润为103元的有16天,日利润为112元的有38天,
所以这100天的日平均利润为
=98.68(元).
②利润不超过100元,即当且仅当报纸日需求量不大于260份,
故当天的利润不超过100元的概率为P=0.1+0.2+0.16=0.46.
答题启示
(1)准确理解题意,善于从图表信息中提炼数据关系,明确数字特征的含义,提高识图和数据处理能力.
(2)正确判定事件间的关系,善于将复杂事件的概率转化为互斥事件或对立事件的概率.
对点训练
(2019·湖南长沙模拟)某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获量Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:
X | 1 | 2 | 3 | 4 |
Y | 51 | 48 | 45 | 42 |
这里,两株作物“相近”是指它们之间的直线距离不超过1米.
(1)完成下表,并求所种作物的平均年收获量;
Y | 51 | 48 | 45 | 42 |
频数 |
| 4 |
|
|
(2)在所种作物中随机选取一株,求它的年收获量至少为48 kg的概率.
解 (1)所种作物的总株数为1+2+3+4+5=15,其中“相近”作物株数为1的作物有2株,“相近”作物株数为2的作物有4株,“相近”作物株数为3的作物有6株,“相近”作物株数为4的作物有3株.列表如下:
Y | 51 | 48 | 45 | 42 |
频数 | 2 | 4 | 6 | 3 |
所种作物的平均年收获量为
===46.
(2)由(1)知,P(Y=51)=,P(Y=48)=.
故在所种作物中随机选取一株,它的年收获量至少为48 kg的概率为P(Y≥48)=P(Y=51)+P(Y=48)=+=.