2020届黑龙江省哈尔滨市(东北三省四市)高三下学期高考调研模拟数学(理)试题(解析版)
展开2020届黑龙江省哈尔滨市(东北三省四市)高三下学期高考调研模拟数学(理)试题
一、单选题
1.已知全集,集合,,则( )
A. B. C. D.
【答案】B
【解析】先由已知得到,再与A求交集即可.
【详解】
由已知,,故.
故选:B.
【点睛】
本题考查集合的交集、补集运算,考查学生的基本计算能力,是一道基础题.
2.已知复数,则的虚部为( )
A.-1 B. C.1 D.
【答案】A
【解析】分子分母同乘分母的共轭复数即可.
【详解】
,故的虚部为.
故选:A.
【点睛】
本题考查复数的除法运算,考查学生运算能力,是一道容易题.
3.2019年某校迎国庆70周年歌咏比赛中,甲乙两个合唱队每场比赛得分的茎叶图如图所示(以十位数字为茎,个位数字为叶).若甲队得分的中位数是86,乙队得分的平均数是88,则( )
A.170 B.10 C.172 D.12
【答案】D
【解析】中位数指一串数据按从小(大)到大(小)排列后,处在最中间的那个数,平均数指一串数据的算术平均数.
【详解】
由茎叶图知,甲的中位数为,故;
乙的平均数为,
解得,所以.
故选:D.
【点睛】
本题考查茎叶图的应用,涉及到中位数、平均数的知识,是一道容易题.
4.的展开式中的系数为( )
A.5 B.10 C.20 D.30
【答案】C
【解析】由知,展开式中项有两项,一项是中的项,另一项是与中含x的项乘积构成.
【详解】
由已知,,因为展开式的通项为,所以
展开式中的系数为.
故选:C.
【点睛】
本题考查求二项式定理展开式中的特定项,解决这类问题要注意通项公式应写准确,本题是一道基础题.
5.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍.其中记载有求“囷盖”的术:“置如其周,令相承也.又以高乘之,三十六成一”.该术相当于给出了由圆锥的底面周长与高,计算其体积的近似公式.它实际上是将圆锥体积公式中的圆周率近似取为3.那么近似公式相当于将圆锥体积公式中的圆周率近似取为( )
A. B. C. D.
【答案】C
【解析】将圆锥的体积用两种方式表达,即,解出即可.
【详解】
设圆锥底面圆的半径为r,则,又,
故,所以,.
故选:C.
【点睛】
本题利用古代数学问题考查圆锥体积计算的实际应用,考查学生的运算求解能力、创新能力.
6.已知公差不为0的等差数列的前项的和为,,且成等比数列,则( )
A.56 B.72 C.88 D.40
【答案】B
【解析】,将代入,求得公差d,再利用等差数列的前n项和公式计算即可.
【详解】
由已知,,,故,解得或(舍),
故,.
故选:B.
【点睛】
本题考查等差数列的前n项和公式,考查等差数列基本量的计算,是一道容易题.
7.下列说法正确的是( )
A.命题“,”的否定形式是“,”
B.若平面,,,满足,则
C.随机变量服从正态分布(),若,则
D.设是实数,“”是“”的充分不必要条件
【答案】D
【解析】由特称命题的否定是全称命题可判断选项A;可能相交,可判断B选项;利用正态分布的性质可判断选项C;或,利用集合间的包含关系可判断选项D.
【详解】
命题“,”的否定形式是“,”,故A错误;,
,则可能相交,故B错误;若,则,所以
,故,所以C错误;由,得或,
故“”是“”的充分不必要条件,D正确.
故选:D.
【点睛】
本题考查命题的真假判断,涉及到特称命题的否定、面面相关的命题、正态分布、充分条件与必要条件等,是一道容易题.
8.已知双曲线:(,)的右焦点与圆:的圆心重合,且圆被双曲线的一条渐近线截得的弦长为,则双曲线的离心率为( )
A.2 B. C. D.3
【答案】A
【解析】由已知,圆心M到渐近线的距离为,可得,又,解方程即可.
【详解】
由已知,,渐近线方程为,因为圆被双曲线的一条渐近线截得的弦长为,
所以圆心M到渐近线的距离为,故,
所以离心率为.
故选:A.
【点睛】
本题考查双曲线离心率的问题,涉及到直线与圆的位置关系,考查学生的运算能力,是一道容易题.
9.已知是圆心为坐标原点,半径为1的圆上的任意一点,将射线绕点逆时针旋转到交圆于点,则的最大值为( )
A.3 B.2 C. D.
【答案】C
【解析】设射线OA与x轴正向所成的角为,由三角函数的定义得,,,利用辅助角公式计算即可.
【详解】
设射线OA与x轴正向所成的角为,由已知,,
,所以
,
当时,取得等号.
故选:C.
【点睛】
本题考查正弦型函数的最值问题,涉及到三角函数的定义、辅助角公式等知识,是一道容易题.
10.从集合中随机选取一个数记为,从集合中随机选取一个数记为,则在方程表示双曲线的条件下,方程表示焦点在轴上的双曲线的概率为( )
A. B. C. D.
【答案】A
【解析】设事件A为“方程表示双曲线”,事件B为“方程表示焦点在轴上的双曲线”,分别计算出,再利用公式计算即可.
【详解】
设事件A为“方程表示双曲线”,事件B为“方程表示焦点在轴上
的双曲线”,由题意,,,则所求的概率为
.
故选:A.
【点睛】
本题考查利用定义计算条件概率的问题,涉及到双曲线的定义,是一道容易题.
11.已知函数若关于的方程有六个不相等的实数根,则实数的取值范围为( )
A. B. C. D.
【答案】B
【解析】令,则,由图象分析可知在上有两个不同的根,再利用一元二次方程根的分布即可解决.
【详解】
令,则,如图
与顶多只有3个不同交点,要使关于的方程有
六个不相等的实数根,则有两个不同的根,
设由根的分布可知,
,解得.
故选:B.
【点睛】
本题考查复合方程根的个数问题,涉及到一元二次方程根的分布,考查学生转化与化归和数形结合的思想,是一道中档题.
12.已知定义在上的函数满足,且当时,.设在上的最大值为(),且数列的前项的和为.若对于任意正整数不等式恒成立,则实数的取值范围为( )
A. B. C. D.
【答案】C
【解析】由已知先求出,即,进一步可得,再将所求问题转化为对于任意正整数恒成立,设,只需找到数列的最大值即可.
【详解】
当时,则,,
所以,,显然当时,
,故,,若对于任意正整数不等式
恒成立,即对于任意正整数恒成立,即对于任
意正整数恒成立,设,,令,解得,
令,解得,考虑到,故有当时,单调递增,
当时,有单调递减,故数列的最大值为,
所以.
故选:C.
【点睛】
本题考查数列中的不等式恒成立问题,涉及到求函数解析、等比数列前n项和、数列单调性的判断等知识,是一道较为综合的数列题.
二、填空题
13.若曲线(其中常数)在点处的切线的斜率为1,则________.
【答案】
【解析】利用导数的几何意义,由解方程即可.
【详解】
由已知,,所以,解得.
故答案为:.
【点睛】
本题考查导数的几何意义,考查学生的基本运算能力,是一道基础题.
14.若函数的图像向左平移个单位得到函数的图像.则在区间上的最小值为________.
【答案】
【解析】注意平移是针对自变量x,所以,再利用整体换元法求值域(最值)即可.
【详解】
由已知,,
,又,故,
,所以的最小值为.
故答案为:.
【点睛】
本题考查正弦型函数在给定区间上的最值问题,涉及到图象的平移变换、辅助角公式的应用,是一道基础题.
15.如图所示,在边长为4的正方形纸片中,与相交于.剪去,将剩余部分沿,折叠,使、重合,则以、、、为顶点的四面体的外接球的体积为________.
【答案】
【解析】将三棱锥置入正方体中,利用正方体体对角线为三棱锥外接球的直径即可得到答案.
【详解】
由已知,将三棱锥置入正方体中,如图所示
,,故正方体体对角线长为,
所以外接球半径为,其体积为.
故答案为:.
【点睛】
本题考查三棱锥外接球的体积问题,一般在处理特殊几何体的外接球问题时,要考虑是否能将其置入正(长)方体中,是一道中档题.
16.已知椭圆:的左、右焦点分别为,,如图是过且垂直于长轴的弦,则的内切圆方程是________.
【答案】
【解析】利用公式计算出,其中为的周长,为内切圆半径,再利用圆心到直线AB的距离等于半径可得到圆心坐标.
【详解】
由已知,,,,设内切圆的圆心为,半径为,则
,故有,
解得,由,或(舍),所以的内切圆方程为
.
故答案为:.
【点睛】
本题考查椭圆中三角形内切圆的方程问题,涉及到椭圆焦点三角形、椭圆的定义等知识,考查学生的运算能力,是一道中档题.
三、解答题
17.在中,为边上一点,,.
(1)求;
(2)若,,求.
【答案】(1);(2)4
【解析】(1),利用两角差的正弦公式计算即可;
(2)设,在中,用正弦定理将用x表示,在中用一次余弦定理即可解决.
【详解】
(1)∵,
∴,
所以,
.
(2)∵,
∴设,,
在中,由正弦定理得,,
∴,
∴,
∵,
∴
∴.
【点睛】
本题考查两角差的正弦公式以及正余弦定理解三角形,考查学生的运算求解能力,是一道容易题.
18.某大型单位举行了一次全体员工都参加的考试,从中随机抽取了20人的分数.以下茎叶图记录了他们的考试分数(以十位数字为茎,个位数字为叶):
若分数不低于95分,则称该员工的成绩为“优秀”.
(1)从这20人中任取3人,求恰有1人成绩“优秀”的概率;
(2)根据这20人的分数补全下方的频率分布表和频率分布直方图,并根据频率分布直方图解决下面的问题.
组别 | 分组 | 频数 | 频率 | |
1 |
|
|
| |
2 |
|
|
| |
3 |
|
|
| |
4 |
|
|
|
①估计所有员工的平均分数(同一组中的数据用该组区间的中点值作代表);
②若从所有员工中任选3人,记表示抽到的员工成绩为“优秀”的人数,求的分布列和数学期望.
【答案】(1);(2)①82,②分布列见解析,
【解析】(1)从20人中任取3人共有种结果,恰有1人成绩“优秀”共有种结果,利用古典概型的概率计算公式计算即可;
(2)①平均数的估计值为各小矩形的组中值与其面积乘积的和;②要注意服从的是二项分布,不是超几何分布,利用二项分布的分布列及期望公式求解即可.
【详解】
(1)设从20人中任取3人恰有1人成绩“优秀”为事件,
则,所以,恰有1人“优秀”的概率为.
(2)
组别 | 分组 | 频数 | 频率 | |
1 | 2 | 0.01 | ||
2 | 6 | 0.03 | ||
3 | 8 | 0.04 | ||
4 | 4 | 0.02 |
①,
估计所有员工的平均分为82
②的可能取值为0、1、2、3,随机选取1人是“优秀”的概率为,
∴;
;
;
;
∴的分布列为
0 | 1 | 2 | 3 | |
∵,∴数学期望.
【点睛】
本题考查古典概型的概率计算以及二项分布期望的问题,涉及到频率分布直方图、平均数的估计值等知识,是一道容易题.
19.已知抛物线:的焦点为,过上一点()作两条倾斜角互补的直线分别与交于,两点,
(1)证明:直线的斜率是-1;
(2)若,,成等比数列,求直线的方程.
【答案】(1)见解析;(2)
【解析】(1)设,,由已知,得,代入中即可;
(2)利用抛物线的定义将转化为,再利用韦达定理计算.
【详解】
(1)在抛物线上,∴,
设,,
由题可知,,∴,
∴,
∴,∴,
∴
(2)由(1)问可设::,
则, , ,
∴,∴,
即(),
将直线与抛物线联立,可得:,
所以,
代入()式,可得满足,∴:.
【点睛】
本题考查直线与抛物线的位置关系的应用,在处理直线与抛物线位置关系的问题时,通常要涉及韦达定理来求解,本题查学生的运算求解能力,是一道中档题.
20.如图,在直角中,,通过以直线为轴顺时针旋转得到().点为斜边上一点.点为线段上一点,且.
(1)证明:平面;
(2)当直线与平面所成的角取最大值时,求二面角的正弦值.
【答案】(1)见解析;(2)
【解析】(1)先算出的长度,利用勾股定理证明,再由已知可得,利用线面垂直的判定定理即可证明;
(2)由(1)可得为直线与平面所成的角,要使其最大,则应最小,可得为中点,然后建系分别求出平面的法向量即可算得二面角的余弦值,进一步得到正弦值.
【详解】
(1)在中,,由余弦定理得
,
∴,
∴,
由题意可知:∴,,,
∴平面,
平面,∴,
又,
∴平面.
(2)以为坐标原点,以,,的方向为,,轴的正方向,建立空间直角坐标系.
∵平面,∴在平面上的射影是,
∴与平面所成的角是,∴最大时,即,点为中点.
,,,,,
,,设平面的法向量,
由,得,令,得,
所以平面的法向量,
同理,设平面的法向量,由,得,
令,得,所以平面的法向量,
∴,,
故二面角的正弦值为.
【点睛】
本题考查线面垂直的判定定理以及利用向量法求二面角的正弦值,考查学生的运算求解能力,是一道中档题.
21.已知函数(),是的导数.
(1)当时,令,为的导数.证明:在区间存在唯一的极小值点;
(2)已知函数在上单调递减,求的取值范围.
【答案】(1)见解析;(2)
【解析】(1)设,,注意到在上单增,再利用零点存在性定理即可解决;
(2)函数在上单调递减,则在恒成立,即在上恒成立,构造函数,求导讨论的最值即可.
【详解】
(1)由已知,,所以,
设,,
当时,单调递增,而,,且在上图象连续
不断.所以在上有唯一零点,
当时,;当时,;
∴在单调递减,在单调递增,故在区间上存在唯一的极小
值点,即在区间上存在唯一的极小值点;
(2)设,,,
∴在单调递增,,
即,从而,
因为函数在上单调递减,
∴在上恒成立,
令,
∵,
∴,
在上单调递减,,
当时,,则在上单调递减,,符合题意.
当时,在上单调递减,
所以一定存在,
当时,,在上单调递增,
与题意不符,舍去.
综上,的取值范围是
【点睛】
本题考查利用导数研究函数的极值点、不等式恒成立问题,在处理恒成立问题时,通常是构造函数,转化成函数的最值来处理,本题是一道较难的题.
22.在直角坐标系中,曲线的参数方程为(为参数).点在曲线上,点满足.
(1)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,求动点的轨迹的极坐标方程;
(2)点,分别是曲线上第一象限,第二象限上两点,且满足,求的值.
【答案】(1)();(2)
【解析】(1)由已知,曲线的参数方程消去t后,要注意x的范围,再利用普通方程与极坐标方程的互化公式运算即可;
(2)设,,由(1)可得,,相加即可得到证明.
【详解】
(1),
∵,∴,∴,
由题可知:,
:().
(2)因为,
设,,
则,
,
.
【点睛】
本题考查参数方程、普通方程、极坐标方程间的互化,考查学生的计算能力,是一道容易题.
23.已知关于的不等式有解.
(1)求实数的最大值;
(2)若,,均为正实数,且满足.证明:.
【答案】(1);(2)见解析
【解析】(1)由题意,只需找到的最大值即可;
(2),构造并利用基本不等式可得,即.
【详解】
(1),
∴的最大值为4.
关于的不等式有解等价于,
(ⅰ)当时,上述不等式转化为,解得,
(ⅱ)当时,上述不等式转化为,解得,
综上所述,实数的取值范围为,则实数的最大值为3,即.
(2)证明:根据(1)求解知,所以,
又∵,,,,
,当且仅当时,等号成立,
即,∴,
所以,.
【点睛】
本题考查绝对值不等式中的能成立问题以及综合法证明不等式问题,是一道中档题.