寒假特辑
搜索
      上传资料 赚现金

      江苏泰州2024~2025学年高二下册6月期末考试数学试题[含解析]

      • 937.3 KB
      • 2025-07-02 16:42
      • 32
      • 0
      • 柏宇
      加入资料篮
      立即下载
      寒假特辑
      江苏泰州2024~2025学年高二下册6月期末考试数学试题[含解析]第1页
      1/21
      江苏泰州2024~2025学年高二下册6月期末考试数学试题[含解析]第2页
      2/21
      江苏泰州2024~2025学年高二下册6月期末考试数学试题[含解析]第3页
      3/21
      还剩18页未读, 继续阅读

      江苏泰州2024~2025学年高二下册6月期末考试数学试题[含解析]

      展开

      这是一份江苏泰州2024~2025学年高二下册6月期末考试数学试题[含解析],共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
      一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.
      1. 设是实数,已知,若,则的值为( )
      A. B. C. 3D. 6
      【答案】B
      【解析】
      【分析】利用向量平行的坐标运算求解答案.
      【详解】因为,
      所以使得即
      即即
      故选:B.
      2. 对四组数据进行统计,获得如图所示的散点图,关于其相关系数的比较,正确的是( )
      A. B.
      C. D.
      【答案】A
      【解析】
      【分析】根据题中给出的散点图,先判断是正相关还是负相关,然后根据散点图的集中程度分析相关系数的大小
      【详解】解:由图可知,图2和图3是正相关,图1和图4是负相关,
      囷1和图2的点相对更加集中,所以相关性更强,所以接近于,接近1,
      所以,
      故选:A
      3. 学校安排3位教师任教6个班级,每位教师任教2个班,则不同的安排方法的总数为( )
      A. 15B. 90C. 120D. 540
      【答案】B
      【解析】
      【分析】根据题意,依次分析3名教师的任教班级的情况,由分步计数原理计算可得答案.
      【详解】根据题意,对于第一名教师:可以在6个班级任选2个,有种选法;
      对于第二名教师:可以在剩下的4个班级任选2个,有种选法;
      对于第二名教师:教剩下的2个班级,有种选法;
      则有种不同的选法;
      故选:B.
      4. 拋掷一颗质地均匀的骰子一次,设表示结果向上的点数,则的方差为( )
      A. 0B. C. D.
      【答案】D
      【解析】
      【分析】先确定随机变量所有可能取值,然后求出每个随机变量取值对应事件的概率,最后求出期望和方差.
      【详解】由题可得随机变量所有可能取值为:1,2,3,4,5,6;由古典概型的概率知识可知:,
      所以,则
      故选:D
      5. 若某银行储蓄卡的密码由6位数字组成.某人在银行自助取款机上输入密码时,忘记了密码的最后1位数字,如果某人记得密码的最后1位是偶数,那么这个人不超过2次就输对密码的概率为( )
      A. B. C. D.
      【答案】C
      【解析】
      【分析】根据古典概型计算公式,结合概率加法和乘法的运算公式进行求解即可.
      【详解】设事件:一次就按对,事件:二次按对,
      所以不超过2次就按对的概率为,
      故选:C
      6. 已知的展开式中,仅有第5项的二项式系数最大,则展开式中系数的最小值为( )
      A. B. C. D.
      【答案】C
      【解析】
      【分析】由的展开式中,仅有第5项的二项式系数最大,得到,从而求出展开式中系数的最小值.
      【详解】因为的展开式中,仅有第5项的二项式系数最大,所以,
      所以展开式的通项公式为,要使展开式中系数的最小值,则为奇数,取值为1,3,5,7,所以当或5时,系数最小,则展开式中系数的最小值为,
      故选:C
      7. 已知20条试题中有8条选择题,甲无放回地依次从中抽取5条题,乙有放回地依次从中抽取5条题,甲、乙每次均抽取一条试题,抽出的5条题中选择题的条数分别为,的期望分别为,方差分别为,则( )
      A. B.
      C. D.
      【答案】A
      【解析】
      【分析】随机变量服从超几何分布, 随机变量服从二项分布,根据超几何分布和二项分布的均值、方差公式计算即可.
      【详解】由题意可知,的可能取值为,的可能取值为,
      随机变量服从超几何分布,随机变量服从二项分布,
      根据超几何分布的均值方差公式得:
      ,即,
      .
      根据超二项分布的均值方差公式得:
      ,即

      所以,.
      故选:A
      8. 在空间直角坐标系中,已知点,若点到平面的距离为,则点的坐标可以是( )
      A. B. C. D.
      【答案】D
      【解析】
      【分析】利用点到平面距离的向量求法逐项检验可得答案.
      【详解】对于A,当时,设为平面的一个法向量,
      ,,
      所以,即,令,则,
      则点到平面的距离为,故A错误;
      对于B,当时,设为平面的一个法向量,
      ,,
      所以,即,令,则,
      则点到平面的距离为,故B错误;
      对于C,当时,设为平面的一个法向量,
      ,,
      所以,即,令,则,
      则点到平面的距离为,故C错误;
      对于D,当时,设为平面的一个法向量,
      ,,
      所以,即,令,则,
      则点到平面的距离为,故D正确.
      故选:D.
      二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.
      9. 某种产品的加工需要经过5道工序,则以下说法正确的是( )
      A. 如果其中某道工序不能放在最后,那么有96种加工顺序
      B. 如果其中某2道工序不能放在最前,也不能放在最后,那么有36种加工顺序
      C. 如果其中某2道工序必须相邻,那么有24种加工顺序
      D. 如果其中某2道工序不能相邻,那么有72种加工顺序
      【答案】ABD
      【解析】
      【分析】先从另外4道工序中任选1道工序放在最后,再将剩余的4道工序全排列即可判断A;先从另外3道工序中任选2道工序放在最前和最后,再将剩余的3道工序全排列即可判断B;先排这2道工序,再将它们看做一个整体,与剩余的工序全排列即可判断C;先排其余的3道工序,出现4个空位,再将这2道工序插空即可判断D
      【详解】先从另外4道工序中任选1道工序放在最后,有种不同的排法,
      再将剩余的4道工序全排列,有种不同的排法,
      故由分步乘法原理可得,共有种加工顺序,A正确;
      先从另外3道工序中任选2道工序放在最前和最后,有种不同的排法,
      再将剩余的3道工序全排列,有种不同的排法,故由分步乘法原理可得,
      共有种加工顺序,B正确;
      先排这2道工序,有种不同的排法,再将它们看做一个整体,
      与剩余的工序全排列,有种不同的排法,故由分步乘法原理可得,
      共有种加工顺序,C错误;
      先排其余的3道工序,有种不同的排法,出现4个空位,
      再将这2道工序插空,有种不同的排法,所以由分步乘法原理可得,
      共有种加工顺序,D正确.
      故选:ABD
      10. 下列命题正确的是( )
      A. 若随机变量满足,则
      B. 若,则
      C. 若,则
      D. 若分布,,则
      【答案】BC
      【解析】
      【分析】A选项,根据方差的性质计算;B选项,利用贝叶斯公式计算;CD选项,根据超几何分布和两点分布的性质计算.
      【详解】,故A错;
      因为,所以,
      所以,故B正确;
      若,则,故C正确;
      若分布,,则,故D错.
      故选:BC.
      11. 如图,四棱锥的底面为平行四边形,且,,为的重心,为的中点.若,则下列结论正确的是( )
      A. .B.
      C 若,则向量共面D. 若,则
      【答案】ACD
      【解析】
      【分析】结合空间向量线性运算利用表示,结合空间向量基本定理求,判断A,表示,结合模的性质及数量积运算律求其模长,判断B,表示,结合向量共面定理判断C,由,可得,化简可求,判断D.
      【详解】延长交与点,因为为的重心,
      所以,
      所以,
      所以,

      所以,又,
      所以,
      所以,A正确;
      因为,
      所以,
      所以,
      所以,
      又,,
      所以,,,
      所以,
      所以,B错误;
      因为,
      ,,
      设,则,,,
      所以,,
      所以,所以向量共面,C正确;
      因为,

      由可得,,
      又,,,
      所以,
      所以,
      所以,D正确.
      故选:ACD.
      三、填空题:本题共3小题,每小题5分,共15分.
      12. 某企业生产的金属棒的长度(单位:)近似的服从正态分布,则长度的期望__________:随机抽取1万根金属棒,长度在(单位:)的金属棒大约有_______________根.(参考数据:)
      【答案】 ①. ②.
      【解析】
      【分析】根据正态分布的性质求出、,即可估计人数.
      【详解】因为,所以,,所以,
      又,,
      所以,
      所以,即随机抽取1万根金属棒,长度在(单位:)的金属棒大约有根.
      故答案为:;
      13. 已知,,则_______________.(用含有的式子表示)
      【答案】##
      【解析】
      【分析】根据二项展开式求出含项的系数,结合题意和即可得出结论;
      【详解】因为,,
      令,
      则的展开式中含项的系数为
      因为,
      所以项的系数为:
      .
      所以.
      故答案为:
      14. 某高中高二(1)班10名学生、高二(2)班10名学生、高二(3)班20名学生参加“少年强则国强”演讲比赛,比赛采用随机抽签的方式确定出场顺序,每位学生依次出场.记“高二(1)班全部学生完成比赛后,高二(2)班和高二(3)班都有学生尚未完成比赛”为事件A,则事件A发生的概率为_______________.
      【答案】
      【解析】
      【分析】本题需要对题目进行转化,将高二(1)班10名学生、高二(2)班10名学生、高二(3)班20名学生转化为,1班1名学生,2班1名学生,3班2名学生,再进行全排列,利用概率公式求解答案.
      【详解】根据题目本题主要关注的问题是最后一名参赛学生是哪个班级的学生.
      问题1:如果最后一位赛学生为1班学生,即1班完成比赛时,2班、3班已经全部完成,
      此时的概率为,表示1班10位学生选取1位作为最后一位参赛学生,
      表示去除最后一名参赛学生后剩余学生全排列,作为分母表示40位学生的全排列.
      同理可得,最后一名参赛学生是2班的概率为,
      最后一名参赛学生是3班的概率为.
      将以上高二(1)班10名学生、高二(2)班10名学生、高二(3)班20名学生,
      按照比例转化为,1班1名学生,2班1名学生,3班2名学生,进行考察.
      问题2:发现最后一名参赛学生是1班的概率为,最后一名参赛学生是2班的概率为,
      最后一名参赛学生是3班的概率为,所以问题1与问题2等价.
      不妨令1班学生为a,2班学生为b,三班学生为c,d,则全排列作为概率公式分母,即.
      记“高二(1)班全部学生完成比赛后,高二(2)班和高二(3)班都有学生尚未完成比赛”事件A,现在对事件A进行分析:
      第一类:a在首位时,b,c,d全排列,有种可能;
      第二类:a在第二位时,b必须在第三或第四位,c,d全排列,有种可能;共种可能.
      所以.
      故答案为:.
      四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.
      15. 在的展开式中,第3项与倒数第3项的系数之比为.
      (1)求的值;
      (2)求展开式中的有理项.
      【答案】(1)
      (2)和
      【解析】
      【分析】(1)由题意求出第3项与倒数第3项的系数,建立等量关系求解即可;
      (2)求出展开式的通项公式为:,由于求展开式中的有理项,所以为有理数,则,求解即可.
      【小问1详解】
      的展开式的通项公式为:,
      所以第三项的系数为:,倒数第3项的系数为:,
      所以,所以,所以.
      【小问2详解】
      的展开式的通项公式为:,
      所以为有理数,则,
      ,或,
      所以展开式中的有理项为:和.
      16. 某旅游景点开展景区游客满意度调查活动,统计得到2024年1月至5月对景区服务不满意游客人数如下:
      (1)求对景区服务不满意的游客人数与月份之间的线性回归方程,并预测6月该景点对景区服务不满意的游客人数;
      (2)工作人员从这5个月内的调查表中随机抽查100人,调查满意度与性别的关系,得到下表,则能否有的把握认为满意度与性别有关?
      附:线性回归方程为,其中.

      【答案】(1)答案见解析
      (2)有把握
      【解析】
      【分析】(1)根据题给数据求解回归方程即可得出结论;
      (2)根据题给数据分析列联表求解得出结论
      【小问1详解】
      由表中的数据可知,


      ,,
      不满意人数与月份之间的回归直线方程为,
      当时,
      预测该小区10月份对景区服务不满意人数为73;
      【小问2详解】
      提出假设:对景区服务满意度与性别无关,
      由表中的数据可得,
      根据小概率值的独立性检验,我们推断不成立,
      有的把握认为满意度与性别有关.
      17. 某同学参加科技知识网络挑战赛,依次回答从系统题库中随机选择的试题,每题作答完毕后,可以选择继续答题,或者结束比赛,系统计算比赛得分.已知该同学答对每道题的概率均为,且每次答题相互独立.
      (1)已知,若该同学连续作答30道试题后结束比赛,记该同学答对道试题的概率为,则为何值时,取得最大值?
      (2)已知,若该同学选择连续作答道试题后结束比赛的概率为,,求该同学恰好答错2道试题的概率.
      【答案】(1)
      (2)
      【解析】
      【分析】(1)先得到,,且,利用得到答案;
      (2)由概率之和为1得到方程,结合极限值求出,由全概率公式求出该同学恰好答错2道试题的概率.
      【小问1详解】
      ,,且,
      由,即,
      故,
      解得,
      又,所以,
      故时,取得最大值;
      【小问2详解】
      由题意得,
      即,解得,
      故该同学选择连续作答道试题后结束比赛概率为,
      该同学恰好答错2道试题的概率为
      该同学恰好答错2道试题的概率为.
      【点睛】关键点点睛:表达出概率后,利用得到不等式,进行求解
      18. 在空间几何体中,四边形均为直角梯形,,.
      (1)如图1,若,求直线与平面所成角的正弦值;
      (2)如图2,设
      (ⅰ)求证:平面平面;
      (ⅱ)若二面角的余弦值为,求的值.
      【答案】(1)
      (2)(ⅰ)证明见解析;(ⅱ)
      【解析】
      【分析】(1)建立空间直角坐标系,利用空间向量法求出线面角的正弦值;
      (2)(ⅰ)设,则,由,所以,求出平面、的法向量,利用空间向量法证明即可;
      (ⅱ)求出平面的法向量,利用空间向量法表示出二面角的余弦值,即可得到方程,求出,即可得到点坐标,再由夹角公式计算可得.
      【小问1详解】
      因为,,即,,,
      如图建立空间直角坐标系,则,,,,,,
      所以,,,
      设平面的法向量为,则,
      取,
      设直线与平面所成角为,
      则,
      所以直线与平面所成角的正弦值为.
      【小问2详解】
      (ⅰ)如图建立空间直角坐标系,设,则,
      因为,所以,
      所以,,,,,
      设平面的法向量为,
      则,取,
      设平面的法向量为,
      则,取,
      因为,
      所以,所以平面平面;
      (ⅱ)设平面的法向量为,则,
      取,
      设二面角的平面角为,
      所以

      所以,即,解得或(舍去),则,
      所以,即,又,
      所以.
      19. 2024年世界羽毛球男、女团体锦标赛(汤姆斯杯、尤伯杯)5日在四川成都落下帷幕,中国男女队在决赛中分别以3比1和3比0的比分战胜印度尼西亚男女队,捧起汤姆斯杯和尤伯杯.其中,中国女队是第16次捧起尤伯杯,中国男队则是第11次获得汤姆斯杯.羽毛球汤姆斯杯决赛实行五场三胜制,每场比赛采取三局两胜制,每一局比赛一方先得21分且领先至少2分则该局获胜;否则继续比赛,先领先2分的选手获胜.若双方打成29平,则先取得30分的一方直接赢得该局比赛.在整个比赛过程中,赢得一球得1分,并继续发球:否则对方得1分,并交换发球.已知在一场汤姆斯杯决赛中,若选手甲发球且甲获胜的概率为,选手乙发球且甲获胜的概率为,每一球比赛的结果相互独立.现甲、乙两名选手比赛至27平,且由甲发球.
      (1)求甲共发两次球赢得比赛的概率;
      (2)求甲以的比分赢得比赛的概率;
      (3)记比赛结束时乙发球的次数为,求的分布列及期望.
      【答案】(1)
      (2)
      (3)分布列见解析,
      【解析】
      【分析】(1)由题意得,甲共发两次球赢得比赛的情况是甲连续两次发球且获胜,求解即可;
      (2)由题意分析出甲以的比分赢得比赛的所有情况,再计算概率即可;
      (3)分析出所有得分情况,得出乙发球次数并计算出概率,即可列出分布列进而得出期望.
      【小问1详解】
      由题意得,甲连续发两次球且赢得比赛,即.
      【小问2详解】
      甲以的比分赢得比赛的情况有:
      ①甲胜,乙胜,甲胜,乙胜,甲胜;
      ②甲胜,乙胜,乙胜,甲胜,甲胜;
      ③乙胜,甲胜,甲胜,乙胜,甲胜;
      ④乙胜,甲胜,乙胜,甲胜,甲胜;
      所以甲以的比分赢得比赛的概率为

      【小问3详解】
      若甲以取胜,乙发0次球,,
      若乙以取胜,乙发1次球,,
      若甲以取胜,乙发1次球,,
      若乙以取胜,乙发2次球,,
      若甲以取胜,乙发2次球,,
      若乙以取胜,乙发2次球,

      故,分布列如下,
      则.
      月份
      1
      2
      3
      4
      5
      不满意的人数
      120
      105
      100
      95
      80
      满意
      不满意
      女性
      48
      12
      男性
      22
      18
      0.1
      0.05
      0.01
      0.005
      0.001
      2.706
      3.841
      6.635
      7.879
      10.828
      0
      1
      2

      相关试卷

      江苏省泰州市2024~2025学年高二下册期末调研测试数学试题[附解析]:

      这是一份江苏省泰州市2024~2025学年高二下册期末调研测试数学试题[附解析],共15页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

      江苏扬州2024~2025学年高二下册6月期末考试数学试题[含解析]:

      这是一份江苏扬州2024~2025学年高二下册6月期末考试数学试题[含解析],共25页。试卷主要包含了 若集合,则, 函数的大致图象为, 已知函数则下列说法正确是, 下列说法正确的是等内容,欢迎下载使用。

      江苏盐城2024~2025学年高二下册6月期末考试数学试题[含解析]:

      这是一份江苏盐城2024~2025学年高二下册6月期末考试数学试题[含解析],共20页。

      资料下载及使用帮助
      版权申诉
      • 1.电子资料成功下载后不支持退换,如发现资料有内容错误问题请联系客服,如若属实,我们会补偿您的损失
      • 2.压缩包下载后请先用软件解压,再使用对应软件打开;软件版本较低时请及时更新
      • 3.资料下载成功后可在60天以内免费重复下载
      版权申诉
      若您为此资料的原创作者,认为该资料内容侵犯了您的知识产权,请扫码添加我们的相关工作人员,我们尽可能的保护您的合法权益。
      入驻教习网,可获得资源免费推广曝光,还可获得多重现金奖励,申请 精品资源制作, 工作室入驻。
      版权申诉二维码
      欢迎来到教习网
      • 900万优选资源,让备课更轻松
      • 600万优选试题,支持自由组卷
      • 高质量可编辑,日均更新2000+
      • 百万教师选择,专业更值得信赖
      微信扫码注册
      微信扫码注册
      qrcode
      二维码已过期
      刷新

      微信扫码,快速注册

      手机号注册
      手机号码

      手机号格式错误

      手机验证码 获取验证码 获取验证码

      手机验证码已经成功发送,5分钟内有效

      设置密码

      6-20个字符,数字、字母或符号

      注册即视为同意教习网「注册协议」「隐私条款」
      QQ注册
      手机号注册
      微信注册

      注册成功

      返回
      顶部
      学业水平 高考一轮 高考二轮 app星空游戏 精选专题 小学寒假 教师福利
      添加客服微信 获取1对1服务
      微信扫描添加客服
      Baidu
      map