开学活动
搜索
    上传资料 赚现金

    (人教版)数学八年级下册期中复习练习专题6.1考前必做30题之二次根式小题培优提升(压轴篇)(2份,原卷版+解析版)

    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      (人教版)数学八年级下册期中复习练习专题6.1考前必做30题之二次根式小题培优提升(压轴篇)(原卷版).doc
    • 解析
      (人教版)数学八年级下册期中复习练习专题6.1考前必做30题之二次根式小题培优提升(压轴篇)(解析版).doc
    (人教版)数学八年级下册期中复习练习专题6.1考前必做30题之二次根式小题培优提升(压轴篇)(原卷版)第1页
    (人教版)数学八年级下册期中复习练习专题6.1考前必做30题之二次根式小题培优提升(压轴篇)(原卷版)第2页
    (人教版)数学八年级下册期中复习练习专题6.1考前必做30题之二次根式小题培优提升(压轴篇)(原卷版)第3页
    (人教版)数学八年级下册期中复习练习专题6.1考前必做30题之二次根式小题培优提升(压轴篇)(解析版)第1页
    (人教版)数学八年级下册期中复习练习专题6.1考前必做30题之二次根式小题培优提升(压轴篇)(解析版)第2页
    (人教版)数学八年级下册期中复习练习专题6.1考前必做30题之二次根式小题培优提升(压轴篇)(解析版)第3页
    还剩3页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    (人教版)数学八年级下册期中复习练习专题6.1考前必做30题之二次根式小题培优提升(压轴篇)(2份,原卷版+解析版)

    展开

    这是一份(人教版)数学八年级下册期中复习练习专题6.1考前必做30题之二次根式小题培优提升(压轴篇)(2份,原卷版+解析版),文件包含人教版数学八年级下册期中复习练习专题61考前必做30题之二次根式小题培优提升压轴篇原卷版doc、人教版数学八年级下册期中复习练习专题61考前必做30题之二次根式小题培优提升压轴篇解析版doc等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。
    1.(2023秋·贵州铜仁·八年级统考期末)代数式在实数范围内有意义,则x的取值范围是( )
    A.,且B.C.D.
    【答案】B
    【分析】根据二次根式的性质及分式的有意义的条件求解即可.
    【详解】解:由题意得:,
    解得:,
    故选:B.
    【点睛】本题考查了二次根式和分式有意义的条件,二次根式的被开方数是非负数,分式的分母不为零,掌握知识点是解题关键.
    2.(2022秋·重庆北碚·九年级西南大学附中校考开学考试)估算的值最接近下列哪个整数( )
    A.9B.10C.11D.12
    【答案】B
    【分析】先根据二次根式混合运算的法则化简代数式,然后估算即可.
    【详解】解∶

    ∵,
    ∴,
    即,
    由于99最接近100,
    ∴的值最接近10.
    故选:B.
    【点睛】本题考查了二次根式的混合运算,无理数的估算,估算无理数大小要用逼近法.用有理数逼近无理数,求无理数的近似值.
    3.(2023春·八年级单元测试)若,则的值是( )
    A.B.4C.1D.8
    【答案】A
    【分析】先将原式变形为,再根据非负性的性质求出a、b、c的值,然后代值计算即可.
    【详解】解:∵,
    ∴,
    ∵,
    ∴,

    ∴,
    ∴.
    故选:A.
    【点睛】本题主要考查了非负数的性质,二次根式的化简求值,正确根据非负数的性质求出a、b、c的值是解题的关键.
    4.(2023秋·河南南阳·九年级统考期末)已知为实数,且,下列说法:①;②当时,的值是4或;③;④.其中正确的个数是( )
    A.1B.2C.3D.4
    【答案】B
    【分析】根据二次根式成立的条件,二次根式的性质,即可一一判定.
    【详解】解:成立,
    ,,
    ,,
    故①③正确,④不正确;
    ②当时,,
    故②不正确;
    故正确的有:2个,
    故选:B.
    【点睛】本题考查了二次根式成立的条件,二次根式的性质,熟练掌握和运用二次根式的相关知识是解决本题的关键.
    5.(2023春·浙江·八年级专题练习)若,则的立方根是( )
    A.1B.5C.D.
    【答案】D
    【分析】利用二次根式中的被开方数是非负数,求得,进而得出,即可求出的值得到立方根.
    【详解】解:,
    且,



    的立方根是,
    故选:D.
    【点睛】本题考查了二次根式有意义的条件,求一个数的立方根,正确掌握被开方数的符号是解题关键.
    6.(2023秋·福建泉州·八年级统考期末)若,则a,b,c的大小关系是( )
    A.B.C.D.
    【答案】A
    【分析】分别将a、b、c平方,利用完全平方公式和二次根式的性质化简后对平方进行比较得出结论.
    【详解】解:∵,
    ∴,
    ∵,,
    ∴,

    ∵,即,
    ∵a、b、c都是大于0的实数,
    ∴,
    故选:A.
    【点睛】本题考查了完全平方公式、二次根式大小的比较等知识点,利用完全平方公式计算出值,是解决本题的关键.
    7.(2022秋·福建·九年级统考期末)下列与为同类二次根式的是( )
    A.B.C.D.
    【答案】A
    【分析】二次根式化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.先将各选项化为最简二次根式,再看被开方数是否相同即可.
    【详解】解:A. ,与为同类二次根式,符合题意;
    B. ,与不是同类二次根式,不符合题意;
    C. 与不是同类二次根式,不符合题意;
    D. ,与不是同类二次根式,不符合题意.
    故选:A.
    【点睛】本题考查了同类二次根式的定义以及二次根式的化简,掌握同类二次根式的定义是解答本题的关键.
    8.(2022·浙江·九年级自主招生)若,则( )(其中表示不超过A的最大整数)
    A.2019B.2020C.2021D.2022
    【答案】C
    【分析】根据,得出,将进行变形为:
    【详解】解:对于正整数,有

    ∴,


    因此,不超过A的最大整数为2021,故C正确.
    故选:C.
    【点睛】本题主要考查了二次根式的化简求值,知道是解答本题的关键.
    9.(2022秋·江苏·八年级统考期末)如图,长方形内有两个相邻的正方形,其面积分别为6和24,则图中阴影部分面积为( )
    A.5B.C.6D.
    【答案】C
    【分析】根据图形可以求得图中两个小正方形的边长,本题得以解决.
    【详解】解:由题意可得,
    大正方形的边长为,小正方形的边长为,
    ∴图中阴影部分的面积为:,
    故选:C.
    【点睛】本题考查二次根式的混合运算和正方形,长方形的面积,解答本题的关键是明确题意,求出大小正方形的边长,利用数形结合的思想解答.
    10.(2021·浙江·九年级自主招生)已知,求的整数部分为( )
    A.11B.12C.13D.14
    【答案】B
    【分析】根据题意求出,,可得,再由,即可求解.
    【详解】解:∵,
    ∴,

    ∴,
    ∴或(舍去),
    ∴,
    ∵,
    ∴,
    ∴的整数部分为12,
    即的整数部分为12.
    故选:B
    【点睛】本题主要考查了二次根式的混合运算,无理数的估算,完全平方公式的应用,熟练掌握二次根式的混合运算,无理数的估算,完全平方公式是解题的关键.
    11.(2023秋·四川宜宾·九年级统考期中)已知,则( )
    A.1B.2C.3D.5
    【答案】D
    【分析】根据二次根式的减法法则进行运算,求出的值,再代入代数式进行计算即可.
    【详解】解:,
    ∴,
    ∴;
    故选D.
    【点睛】本题考查二次根式的减法法则.熟练掌握二次根式的减法法则是解题的关键.
    12.(2022·四川绵阳·东辰国际学校校考模拟预测)实数a、b在数轴上的位置如图所示,则化简的结果是( )
    A.B.C.D.
    【答案】C
    【分析】根据数轴图可知,,再根据化简式子即可.
    【详解】解:根据数轴图可知,,

    故选:C.
    【点睛】本题考查数轴和二次根式及绝对值的化简,分式的基本性质,解题关键是根据数轴图判断绝对值里数值的正负.
    13.(2023春·八年级单元测试)规定,则的值是( )
    A.B.C.D.
    【答案】C
    【分析】根据新定义,直接将代入后,分母有理化即可得到答案.
    【详解】解: ,


    故选:C.
    【点睛】本题考查新定义运算,涉及代数式求值、分母有理化,熟练掌握二次根式运算法则是解决问题的关键.
    14.(2023·全国·九年级专题练习)已知,则的值是( )
    A.18B.C.6D.12
    【答案】D
    【分析】先将已知等式转化为,再根据绝对值和偶次方的非负性可得的值,然后代入计算即可得.
    【详解】解:,

    又,

    解得,
    则,
    故选:D.
    【点睛】本题考查了利用完全平方公式分解因式、绝对值和偶次方的非负性、代数式求值、二次根式的乘法,利用完全平方公式将已知等式转化为是解题关键.
    15.(2023秋·四川宜宾·九年级统考期中)已知,则的值为( )
    A.B.3C.5D.7
    【答案】B
    【分析】根据,得到,即可得解.
    【详解】解:∵,
    ∴,即:
    ∴;
    故选B.
    【点睛】本题考查分式的求值.将作为一个整体,利用平方法进行求解,是解题的关键.
    16.(2021春·山东威海·八年级校考期中)计算正确的结果是( )
    A.B.C.1D.
    【答案】D
    【分析】利用二次根式的乘法,平方差公式,逆用积的乘方法则计算即可.
    【详解】∵
    =
    =
    =,
    ∴选D.
    【点睛】本题考查了二次根式的乘法,平方差公式,逆用积的乘方法则,熟练掌握法则是解题的关键.
    17.(2022春·广东惠州·八年级统考期末)已知,,,…,其中为正整数.设,则值是( )
    A.B.C.D.
    【答案】A
    【分析】根据数字间的规律探索列式计算即可获得答案.
    【详解】解:由题意,可得



    ……



    故选:A.
    【点睛】本题主要考查了二次根式的化简以及实数数字类的规律探索,探索规律,准确计算是解题关键.
    18.(2022秋·河北秦皇岛·八年级校联考阶段练习)对于实数x,我们规定表示不大于x的最大整数,如,,.现对82进行如下操作:82第一次,第二次,第三次,这样对82只需进行3次操作后即可变为1,类似地,对300只需进行多少次操作后即可变为1( )
    A.3B.4C.5D.6
    【答案】B
    【分析】表示不大于x的最大整数,依据题目中提供的操作进行计算即可.
    【详解】解:第一次:,
    第二次: ,
    第三次:,
    第四次:,
    故对300只需进行4次操作后即可变为1,
    故选:B.
    【点睛】本题考查了估算无理数的大小,解决本题的关键是明确表示不大于x的最大整数.
    19.(2022秋·河南驻马店·九年级校考阶段练习)观察下列等式:第1个等式:;第2个等式:;第3个等式:;第4个等式:,……,按照上述规律,计算:( )
    A.B.C.9D.8
    【答案】C
    【分析】首先根据题意,得出一般规律,代入数字相加即可得解.
    【详解】解:第个等式:,
    第个等式:,
    第个等式:,
    第个等式:,
    ……
    第n个等式:,

    =
    ,故C正确.
    故选:A.
    【点睛】本题主要考查了数字的变化规律以及分母有理化,首先要理解题意,找到规律,并进行推导得到答案.
    20.(2023春·重庆九龙坡·八年级重庆实验外国语学校校考开学考试)有依次排列的一列式子:,,,,,…小红对式子进行计算得:
    第1个式子:;
    第2个式子:……
    根据小红的观察和计算,她得到以下几个结论:①第8个式子为;②对第n个式子进行计算的结果为;③前100个式子的和为;④将第n个式子记为,令,且,则正整数.小红得到的结论中正确的有( )
    A.1个B.2个C.3个D.4个
    【答案】C
    【分析】直接写出第n个式子的通式可判断①②,③④直接计算即可.
    【详解】由题可知,第n个式子:,故②正确;
    那么第8个式子为
    而,故①正确;
    第100个式子为:
    则前100个式子的和为:,故③正确;
    令,则可化为
    因为
    所以可化为:
    若,则,故④错误.
    综上所述,①②③正确.
    故选:C
    【点睛】此题考查二次根式的规律,解题关键是将此数式的通式直接写出来,同时化简时需要分母有理化.
    填空题
    21.(2023秋·海南海口·九年级校联考期末)已知,化简:_______.
    【答案】
    【分析】根据二次根式的性质和绝对值的性质直接计算即可.
    【详解】;
    因为,所以,
    即,
    故答案为:.
    【点睛】此题考查二次根式的性质和绝对值的性质,解题关键是牢记公式.
    22.(2022春·广东河源·八年级校考期中)若,则________.
    【答案】1
    【分析】根据二次根式的性质,求得,,即可求解.
    【详解】解:由二次根式的性质可得,,,
    解得,
    则,
    ∴,
    故答案为:1.
    【点睛】此题考查了二次根式的性质及零次幂的运算,解题的关键是掌握二次根式有意义的条件,正确求得 ,.
    23.(2022秋·河南开封·八年级统考期末)计算:______.
    【答案】##
    【分析】先化简各式,再进行加减运算.
    【详解】解:原式

    故答案为:.
    【点睛】本题考查二次根式的混合运算.正确的化简各式,熟练掌握二次根式的运算法则,是解题的关键.
    24.(2023春·浙江宁波·八年级校考阶段练习)已知,,则代数式的值是____________;
    【答案】
    【分析】根据题意可判断,,然后再根据二次根式乘除法法则和合并同类二次根式法则进行化简求值即可.
    【详解】 ,,
    ,,

    故答案为:.
    【点睛】本题主要考查了二次根式的化简,熟练掌握二次根式乘除法公式和合并同类二次根式法则是解本题的关键.
    25.(2023春·全国·八年级专题练习)实数m在数轴上的位置如图所示,则化简的结果为 ___.
    【答案】1
    【分析】由数轴可得:,则有,再进行化简即可.
    【详解】解:由数轴得:,
    ∴,

    故答案为:1.
    【点睛】本题主要考查二次根式的化简,数轴,解答的关键是由数轴得出.
    26.(2023春·全国·八年级专题练习)已知△ABC的三边分别为a、b、c,化简:___________.
    【答案】
    【分析】根据三角形三边的关系得到,据此化简二次根式,然后根据整式的加减计算法则化简即可得答案.
    【详解】解:∵的三边分别为a、b、c,
    ∴,
    ∴,
    ∴原式

    故答案为:.
    【点睛】本题主要考查了二次根式的化简,整式的加减计算,三角形三边的关系,正确根据三角形三边的关系得到是解题的关键.
    27.(2022秋·河北秦皇岛·八年级校联考阶段练习)两个含有二次根式的代数式相乘,若它们的积不含二次根式,那么这两个代数式互为有理化因式.例如:与;与.
    (1)的有理化因式为___________;
    (2)比较大小:__________(选填“>”“
    【分析】(1)先利用平方差公式计算,从而可得答案;
    (2)先变形可得,,结合,从而可得答案;
    (3)先分母有理化,从而原式可化为,再合并同类二次根式即可.
    【详解】解:(1)∵,
    ∴的有理化因式为.
    (2)∵,,
    而,
    ∴,
    ∴.
    (3)



    故答案为:(1);(2);(3).
    【点睛】本题考查的是二次根式的混合运算,与实数运算相关的规律探究,分母有理化的应用,熟练的利用分母有理化解决问题是解本题的关键.
    28.(2022秋·辽宁丹东·八年级统考期末)若与的小数部分分别为,则______.
    【答案】1
    【分析】先估算出的大小,再用含的式子表示出,然后代入计算即可.
    【详解】解:∵,
    ∴,,
    ∴,
    ∴.
    故答案为:1.
    【点睛】本题主要考查了估算无理数的大小、代数式求值以及二次根式的加减运算,求得的值是解题的关键.
    29.(2023秋·河北石家庄·八年级统考期末)使用手机支付宝付款时,常常需要用到密码.嘉淇学完二次根式后,突发奇想,决定用“二次根式法”来产生密码.如,对于二次根式,计算结果为13,中间加一个大写字母X,就得到一个六位密码“”.按照这种产生密码的方法,则利用二次根式产生的六位密码是__________.
    【答案】
    【分析】先求出的值,再根据题意即可得出结论.
    【详解】解:,
    ∴产生的六位数密码是,
    故答案为:.
    【点睛】本题考查的是二次根式的性质与化简,熟知算术平方根的意义是解答此题的关键.
    30.(2022秋·四川遂宁·九年级统考期末)观察下列等式:;


    ……
    根据以上规律,计算______.
    【答案】
    【分析】根据等式所呈现的规律,将原式转化为,再进行运算即可求解.
    【详解】解:;


    ……

    故答案为:.
    【点睛】本题考查了数字变化类,掌握等式所呈现的规律是正确计算的前提.

    相关试卷

    (人教版)数学八年级下册期中复习练习专题6.4考前必做30题之特殊的平行四边形小题培优提升(压轴篇)(2份,原卷版+解析版):

    这是一份(人教版)数学八年级下册期中复习练习专题6.4考前必做30题之特殊的平行四边形小题培优提升(压轴篇)(2份,原卷版+解析版),文件包含人教版数学八年级下册期中复习练习专题64考前必做30题之特殊的平行四边形小题培优提升压轴篇原卷版doc、人教版数学八年级下册期中复习练习专题64考前必做30题之特殊的平行四边形小题培优提升压轴篇解析版doc等2份试卷配套教学资源,其中试卷共61页, 欢迎下载使用。

    (人教版)数学八年级下册期中复习练习专题6.3考前必做30题之平行四边形小题培优提升(压轴篇)(2份,原卷版+解析版):

    这是一份(人教版)数学八年级下册期中复习练习专题6.3考前必做30题之平行四边形小题培优提升(压轴篇)(2份,原卷版+解析版),文件包含人教版数学八年级下册期中复习练习专题63考前必做30题之平行四边形小题培优提升压轴篇原卷版doc、人教版数学八年级下册期中复习练习专题63考前必做30题之平行四边形小题培优提升压轴篇解析版doc等2份试卷配套教学资源,其中试卷共52页, 欢迎下载使用。

    (人教版)数学八年级下册期中复习练习专题6.2考前必做30题之勾股定理小题培优提升(压轴篇)(2份,原卷版+解析版):

    这是一份(人教版)数学八年级下册期中复习练习专题6.2考前必做30题之勾股定理小题培优提升(压轴篇)(2份,原卷版+解析版),文件包含人教版数学八年级下册期中复习练习专题62考前必做30题之勾股定理小题培优提升压轴篇原卷版doc、人教版数学八年级下册期中复习练习专题62考前必做30题之勾股定理小题培优提升压轴篇解析版doc等2份试卷配套教学资源,其中试卷共48页, 欢迎下载使用。

    英语朗读宝
    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map