年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    中考数学一轮复习真题探究+变式训练专题31 对角互补模型(2份,原卷版+解析版)

    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      中考数学一轮复习真题探究+变式训练专题31 对角互补模型(原卷版).doc
    • 解析
      中考数学一轮复习真题探究+变式训练专题31 对角互补模型(解析版).doc
    中考数学一轮复习真题探究+变式训练专题31 对角互补模型(原卷版)第1页
    中考数学一轮复习真题探究+变式训练专题31 对角互补模型(原卷版)第2页
    中考数学一轮复习真题探究+变式训练专题31 对角互补模型(原卷版)第3页
    中考数学一轮复习真题探究+变式训练专题31 对角互补模型(解析版)第1页
    中考数学一轮复习真题探究+变式训练专题31 对角互补模型(解析版)第2页
    中考数学一轮复习真题探究+变式训练专题31 对角互补模型(解析版)第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考数学一轮复习真题探究+变式训练专题31 对角互补模型(2份,原卷版+解析版)

    展开

    这是一份中考数学一轮复习真题探究+变式训练专题31 对角互补模型(2份,原卷版+解析版),文件包含中考数学一轮复习真题探究+变式训练专题31对角互补模型原卷版doc、中考数学一轮复习真题探究+变式训练专题31对角互补模型解析版doc等2份试卷配套教学资源,其中试卷共125页, 欢迎下载使用。

    例1 (2021·安徽安庆·中考真题)如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为( )
    A.4B.3C.2D.1
    例2 (2022·贵州遵义·统考中考真题)探究与实践
    “善思”小组开展“探究四点共圆的条件”活动,得出结论:对角互补的四边形四个顶点共圆.该小组继续利用上述结论进行探究.
    提出问题:
    如图1,在线段同侧有两点,,连接,,,,如果,那么,,,四点在同一个圆上.
    探究展示:
    如图2,作经过点,,的,在劣弧上取一点(不与,重合),连接,则(依据1)

    点,,,四点在同一个圆上(对角互补的四边形四个顶点共圆)
    点,在点,,所确定的上(依据2)
    点,,,四点在同一个圆上
    (1)反思归纳:上述探究过程中的“依据1”、“依据2”分别是指什么?
    依据1:__________;依据2:__________.
    (2)图3,在四边形中,,,则的度数为__________.
    (3)拓展探究:如图4,已知是等腰三角形,,点在上(不与的中点重合),连接.作点关于的对称点,连接并延长交的延长线于,连接,.
    ①求证:,,,四点共圆;
    ②若,的值是否会发生变化,若不变化,求出其值;若变化,请说明理由.
    例3 (2020·湖南益阳·统考中考真题)定义:若四边形有一组对角互补,一组邻边相等,且相等邻边的夹角为直角,像这样的图形称为“直角等邻对补”四边形,简称“直等补”四边形,根据以上定义,解决下列问题:
    (1)如图1,正方形中,是上的点,将绕点旋转,使与重合,此时点的对应点在的延长线上,则四边形为“直等补”四边形,为什么?
    (2)如图2,已知四边形是“直等补”四边形,,,,点到直线的距离为.
    ①求的长.
    ②若、分别是、边上的动点,求周长的最小值.
    对角互补模型特指在四边形中,存在一对对角互补,而且有一组邻边相等的几何模型。
    对角互补模型是经典的几何模型,其中会涉及到全等三角形的证明、倒角的计算、线段数量关系的证明、旋转的构造等综合性较高的几何知识,在校内考试、中考中一直都是热门考点。对角互补模型在初二陆续就会出现,一般会和等腰直角三角形、正方形等特殊图形结合起来,既有选填压轴的题型,也经常会以简答题进行考察。
    常见的四边形对角互补模型含90°-90°对角互补模型、120°-60° 对角互补模型、 2α-(180-2α)对角互补模型。本文会分享对角互补模型常见的两种处理策略:①过顶点做双垂线,构造全等三角形;②进行旋转的构造,构造手拉手全等.
    模型1:全等形——90°对角互补模型

    模型2:全等形——120°对角互补模型
    模型3:全等形——任意角对角互补模型
    模型4:相似形——90°对角互补模型

    【变式1】(2022·江苏常州·统考一模)如图,已知四边形的对角互补,且,,.过顶点C作于E,则的值为( )
    A.B.9C.6D.7.2
    【变式2】(2022·广东佛山·佛山市华英学校校考一模)定义:有一组邻边相等且对角互补的四边形叫做等补四边形.例:如图1,四边形内接于⊙O,AB=AD.则四边形ABCD是等补四边形.
    探究与运用:如图2,在等补四边形ABCD中,AB=AD,其外角∠EAD的平分线交CD的延长线于点F,若CD=10,AF=5,则DF的长为 __.
    【变式3】(2021·浙江金华·校考三模)如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM﹣ON的值不变;(3)△OMN的周长不变;(4)四边形PMON的面积不变,其中正确的序号为_____.
    【变式4】(2022·浙江宁波·校考三模)【基础巩固】
    (1)如图①,在四边形中,,,求证∶;
    (2)【尝试应用】如图②,在平行四边形中,点在上,与互补,,求的长;
    (3)【拓展提高】如图③,在菱形中,为其内部一点,与互补,点在上,,且,,求的长.
    【变式5】(2022·江西南昌·模拟预测)【模型建立】
    (1)如图1,在正方形中,,分别是边,上的点,且,探究图中线段,,之间的数量关系.
    小明的探究思路如下:延长到点,使,连接,先证明,再证明.
    ①,,之间的数量关系为________;
    ②小亮发现这里可以由经过一种图形变换得到,请你写出这种图形变换的过程________.像上面这样有公共顶点,锐角等于较大角的一半,且组成这个较大角的两边相等的几何模型称为半角模型.
    【类比探究】
    (2)如图2,在四边形中,,与互补,,分别是边,上的点,且,试问线段,,之间具有怎样的数量关系?判断并说明理由.
    【模型应用】
    (3)如图3,在矩形中,点在边上,,,,求的长.
    【培优练习】
    1.(2022秋·福建厦门·九年级厦门市第五中学校考期中)如图,(是常量).点P在的平分线上,且,以点P为顶点的绕点P逆时针旋转,在旋转的过程中,的两边分别与,相交于M,N两点,若始终与互补,则以下四个结论:①;②的值不变;③四边形的面积不变;④点M与点N的距离保持不变.其中正确的为( )
    A.①③B.①②③C.①③④D.②③
    2.(2021·山西·九年级专题练习)定义:有一组对角互补的四边形叫做互补四边形,如图,在互补四边形纸片ABCD中,BA=BC,AD=CD,∠A=∠C=90°,∠ADC=30°.将纸片先沿直线BD对折,再将对折后的纸片从一个顶点出发的直线裁剪,把剪开的纸片打开后铺平,若铺平后的纸片中有一个面积为4的平行四边形,则CD的长为__.
    3.(2022秋·安徽宿州·九年级统考期中)定义:若四边形有一组对角互补,一组邻边相等,且相等邻边的夹角为直角,像这样的图形称为“直角等邻对补”四边形,简称“直等补”四边形.根据以上定义,解决下列问题:
    (1)如图1,正方形中,E是上的点,将绕B点旋转,使与重合,此时点E的对应点F在的延长线上,则四边形为“直等补”四边形,为什么?
    (2)如图2,已知四边形是“直等补”四边形,,,,点B到直线的距离为,求的长.
    4.(2022秋·江苏·八年级专题练习)定义:一组对角互补,且对角线平分其中一个内角,称四边形为余缺四边形.
    如图1,四边形,,平分,则四边形为余缺四边形.
    【概念理解】
    (1)用 (填序号)一定可以拼成余缺四边形.
    ①两个全等的直角三角形, ②两个全等的等边三角形;
    (2)如图1,余缺四边形,平分,若,,则 ;
    【初步应用】
    如图2,已知△ABC,∠BAC的平分线AP与BC的垂直平分线交于P点,连接PB、PC.
    (3)求证:四边形ABPC为余缺四边形;
    (4)若,,则的值为 .
    【迁移应用】
    (5)如图3,,等腰的B、C两点分别在射线上,且斜边 (P、A在两侧),若B、C两点在射线、上滑动时,四边形的面积是否发生变化?若不变化,请说明理由;若变化,直接写出面积的最大的值.
    5.(2022秋·江苏南通·八年级如皋市实验初中校考阶段练习)如图1,我们定义:在四边形ABCD中,若AD=BC,且∠ADB+∠BCA=180°,则把四边形ABCD叫做互补等对边四边形.
    (1)如图2,在等边△ABE中,D、C分别是边AE、BE的中点,连接CD,问四边形ABCD是互补等对边四边形吗?请说明理由.
    (2)如图3,在等腰△ABE中,四边形ABCD是互补等对边四边形,求证:∠ABD=∠BAC=∠AEB.
    (3)如图4,在非等腰△ABE中,若四边形ABCD是互补等对边四边形,试问∠ABD=∠BAC=∠AEB是否仍然成立?若成立,请加以证明;若不成立,请说明理由.
    6.(2022秋·湖南长沙·九年级长沙市怡雅中学校考阶段练习)新定义:有一组邻边相等且对角互补的四边形叫做等补四边形.如图1,在四边形中,,,则四边形是一个等补四边形.
    (1)在数学活动课上,怡怡小组对等补四边形进一步探究,发现平分.怡怡小组提供的解题思路是:如图2,过点分别作于,交的延长线于,通过证明,得,再根据“角的内部到角的两边的距离相等的点在角的平分线上”得到平分.请你写出怡怡小组的完整证明过程;
    (2)如图3,在平面直角坐标系中,点、在轴上,以为直径的⊙M交轴于点、,点为弧上一动点(不与、重合).
    ①求证:四边形始终是一个等补四边形;
    ②在图3中,若,,连接,,的值是否会随着点的移动而变化?若不变化,请求出该定值;若变化,请说明理由.
    7.(2022秋·江苏扬州·九年级统考期中)问题提出:
    苏科版九年级(上册)教材在探究圆内接四边形对角的数量关系时提出了两个问题:
    (1)小明发现问题1中的与、与都满足互补关系,请帮助他完善问题1的证明:
    ∵是的直径,
    ∴__________________,
    ∴,
    ∵四边形内角和等于,
    ∴__________________.
    (2)请回答问题2,并说明理由.
    深入探究:
    如图3,的内接四边形恰有一个内切圆,切点分别是点、、、,连接,.
    (1)直接写出四边形边满足的数量关系_________;
    (2)探究、满足的位置关系;
    (3)如图4,若,,,请直接写出图中阴影部分的面积.
    8.(2022秋·湖南长沙·九年级长沙麓山国际实验学校校考阶段练习)定义:如果同一平面内的四个点在同一个圆上,则称这四个点共圆,简称“四点共圆”.我们学过了“圆的内接四边形的对角互补”这一定理,它的逆命题“对角互补的四边形四个顶点共圆”是证明“四点共圆”的一种常用方法.除此之外,我们还经常用“同旁张角相等”来证明“四点共圆”.如图1,在线段AB同侧有两点C,D.连接,,,,如果,那么A,B,C,D“四点共圆”
    (1)如图2,已知四边形中,对角线、相交于点P,点E在的延长线上,下列条件:①;②:③:④.其中,能判定A,B,C,D“四点共圆”的条件有___________:
    (2)如图3,直线与x轴交于点A,与y轴交于点B,点C在x轴正半轴上,点D在y轴负半轴上,若A,B,C,D“四点共圆”,且,求四边形的面积;
    (3)如图4,已知是等腰三角形,,点D是线段上的一个动点(点D不与点B重合,且,连结AD,作点C关于的对称点E,连接并延长交的延长线于F,连接,.
    ①求证:A,D,B,E“四点共圆”;
    ②若,的值是否会发生变化,若不变化,求出其值:若变化,请说明理由.
    9.(2022秋·浙江宁波·九年级浙江省鄞州区宋诏桥中学校考期末)有一组邻边相等且对角互补的四边形叫做等邻边互补四边形.
    (1)如图1,在等邻边互补四边形ABCD中,AD=CD,且AD∥BC,BC=2AD,求∠B的度数;
    (2)如图2,四边形ABCD内接于⊙O,连接DO交AC于点E(不与点O重合),若E是AC的中点,求证:四边形ABCD是等邻边互补四边形;
    (3)在(2)的条件下,延长DO交BC于点F,交⊙O于点G,若,AC=12,求FG的长;
    (4)如图3,四边形ABCD内接于⊙O,AB=BC,BD为⊙O的直径,连接AO并延长交BC于点E,交⊙O于点F,连接FC,设tan∠BAF=x,,求y与x之间的函数关系式.
    10.(2022春·江苏连云港·七年级统考期中)(1)【问题情境】小明翻阅自己数学学习笔记时发现,数学老师在讲评七下《伴你学》第6页“迁移应用”第1题时,曾做过如下追问:如图1,已知,点E、F分别在AB、CD上,点G为平面内一点,当点G在AB、CD之间,且在线段EF左侧时,连接EG、FG,则一定有,为什么?请帮助小明再次说明理由;
    (2)【变式思考】如图2,当点G在AB上方时,且,请直接写出与之间的数量关系______;
    (3)【迁移拓展】①如图3,在(2)的条件下,过点E作直线HK交直线CD于K,使与互补,作的平分线与直线GE交于点L,请你判断FG与KL的位置关系,并说明理由;
    ②在①的条件下,第一次操作;分别作∠BEL和∠DKL的平分线,交点为L1;第二次操作,分别作∠BEL1和∠DKL1的平分线,交点为L2;……第n次操作,分别作∠BELn-1和∠DKLn-1的平分线,交点为L、则∠Ln=______.
    11.(2022春·甘肃兰州·八年级校考期中)四边形ABCD若满足∠A+∠C=180°,则我们称该四边形为“对角互补四边形”.
    (1)四边形ABCD为对角互补四边形,且∠B:∠C:∠D=2:3:4,则∠A的度数为_______;
    (2)如图1,四边形为对角互补四边形,,.
    求证:平分.
    小云同学是这么做的:延长CD至M,使得DM=BC,连AM,可证明△ABC≌△ADM,得到△ACM是等腰直角三角形,由此证明出AC平分∠BCD,还可以知道CB、CD、CA三者关系为_______;
    (3)如图2,四边形ABCD为对角互补四边形,且满足∠BAD=60°,AB=AD,试证明:
    ①AC平分∠BCD;
    ②CA=CB+CD;
    (4)如图3,四边形ABCD为对角互补四边形,,且满足∠ABC=60°,AD=CD,则BA、BC、BD三者关系为_______.
    12.(2022春·吉林·八年级吉林省实验校考期中)定义:若四边形有一组对角互补,一组邻边相等,且相等邻边的夹角为直角,像这样的图形称为“直角等邻对补”四边形,简称“直等补”四边形.
    根据以上定义,解决下列问题:
    (1)如图1,正方形ABCD中,点E在边CD上,将△BCE绕点B旋转,使BC与BA重合,此时点E的对应点F在DA的延长线上,则四边形BEDF______(填“是”或“不是”)“直等补”四边形;
    (2)如图2,已知四边形ABCD是“直等补”四边形,AE=6,AB=BC=10,AD>AB,过点B作BE⊥AD于E,过C作CF⊥BE于点F.
    ①试求EF的长;
    ②连结BD,若点M是线段DB上的动点,请直接写出△MEF周长的最小值.
    13.(2022·陕西宝鸡·统考二模)问题提出
    (1)如图1,四边形ABCD中,,与互补,,点A到BC边的距离为17,求四边形ABCD的面积.
    问题解决
    (2)某公园计划修建主题活动区域,如图2所示,,,,在BC上找一点E,修建两个不同的三角形活动区域,△ABE区域为体育健身活动区域,△ECD为文艺活动表演区域,根据规划要求,,,设EC的长为x(m),△ECD的面积为,求与之间的函数关系式,并求出△ECD面积的最大值.
    14.(2022·山西晋中·统考二模)综合与实践
    问题背景:
    在综合与实践课上,老师让同学们探索有一组邻边相等,一组对角互补的四边形的性质.如图1,在四边形中,,.
    实践操作:
    (1)同学们首先从特殊情形开始探索,如图2,当时,其它条件不变,发现了平分的性质,有两个小组给出如下的证明思路:
    “团结组”:利用“在一个角的内部,到角的两边距离相等的点在这个角的平分线上”;
    “实践组”:由想到将绕点旋转,使与重合,将四边形转化成我们学过的特殊图形.
    ①请你分别在图2,图3中画出符合“团结组”和“实践组”思路的辅助线;
    ②求证:平分;(从上面的两个思路中选一个或按照自己的思路)
    (2)“创新组”的同学发现在图2中,请你说明理由;
    拓展延伸:
    (3)“善思组”的同学受“创新组”同学的启发,提出如下问题:如图4,当时,其它条件不变,延长到点,使,过点分别作交的延长线于点,交的延长线于点,若,则四边形的形状为_______,四边形的面积为______.
    15.(2022秋·山东枣庄·九年级统考期中)定义:若四边形有一组对角互补,一组邻边相等,且相等邻边的夹角为直角,像这样的图形称为“直角等邻对补”四边形,简称“直等补”四边形.根据以上定义,解决下列问题:
    (1)如图1,正方形中是上的点,将绕点旋转,使与重合,此时点的对应点在的延长线上,则四边形______(填“是”或“不是”)“直等补”四边形;
    (2)如图2,已知四边形是“直等补”四边形,,,过点作于点.
    ①试探究与的数量关系,并说明理由;
    ②若,,求的长.
    16.(2022·全国·九年级专题练习)定义:若四边形有一组对角互补,一组邻边相等,且相等邻边的夹角为直角,像这样的图形称为“直角等邻对补”四边形,简称“直等补”四边形.
    根据以上定义,解决下列问题:
    (1)如图1,正方形ABCD中E是CD上的点,将△BCE绕B点旋转,使BC与BA重合,此时点E的对应点F在DA的延长线上,则四边形BEDF (填“是”或“不是”)“直等补”四边形;
    (2)如图2,已知四边形ABCD是“直等补”四边形,AB=BC=10,CD=2,AD>AB,过点B作BE⊥AD于E.
    ①过C作CF⊥BF于点F,试证明:BE=DE,并求BE的长;
    ②若M是AD边上的动点,求△BCM周长的最小值.
    17.(2022春·江西赣州·八年级统考期末)定义:有一组对角互补的四边形叫做“对补四边形”,例如:在四边形中,,或,则四边形是“对补四边形”.
    (1)【概念理解】如图(1),四边形是“对补四边形”.
    ①若,则∠D的度数是_________;
    ②若,且,则_______.
    (2)【拓展延伸】如图(2),四边形是“对补四边形”,当,且时,猜测,,之间的数量关系,并加以证明.
    (3)【类比运用】如图(3),如图(4),在四边形中,,平分.
    ①如图(3),求证:四边形是“对补四边形”;
    ②如图(4),设,连接,当,且时,求的值.
    18.(2022·浙江金华·模拟预测)定义:有一组邻边相等且对角互补的四边形叫做等补四边形.
    (1)阅读与理解:
    如图1,四边形内接于⊙O,点A为弧BD的中点.四边形ABCD (填“是”或“不是”)等补四边形.
    (2)探究与运用:
    ①如图2,在等补四边形ABCD中,AB=AD,连接AC,AC是否平分∠BCD?请说明理由;
    ②如图3,在等补四边形ABCD中,AB=AD,其外角∠EAD的平分线交CD的延长线于点F,若CD=10,AF=5,求DF的长.
    (3)思考与延伸:
    在等补四边形ABCD中,AB=AD=3,∠BAD=120°,当对角线AC长度最大时,以AC为斜边作等腰直角三角形ACP,直接写出线段DP的长度.
    19.(2022秋·陕西西安·九年级校考期末)有这样一类特殊边角特征的四边形,它们有“一组邻边相等且对角互补”,我们称之为“等对补四边形”.
    (1)如图1,四边形ABCD中,∠BAD=∠BCD=90°,AD=AB,AE⊥CD于点E,若AE=4,则四边形ABCD的面积等于 .
    (2)等对补四边形中,经过两条相等邻边的公共顶点的一条对角线,必平分四边形的一个内角,即如图2,四边形ABCD中,AD=DC,∠A+∠C=180°,连接BD,求证:BD平分∠ABC.
    (3)现准备在某地著名风景区开发一片国家稀有动物核心保护区,保护区的规划图如图3所示,该地规划部门要求:四边形ABCD是一个“等对补四边形”,满足AD=DC,AB+AD=12,∠BAD=120°,因地势原因,要求3≤AD≤6,求该区域四边形ABCD面积的最大值.
    20.(2021·山西大同·统考一模)综合与实践
    【问题情境】
    在综合实践课上,老师让同学们以“顶角互补的等腰三角形纸片的图形变换”为主题开展数学活动.如图1,两张等腰三角形纸片ABC和AEF,其中AB=AC=m,AE=AF=n,m>n,∠BAC+∠EAF=180°,△AEF绕点A顺时针旋转,旋转角为,点M为BF的中点.
    【特例感知】
    (1)如图1,当时,AM和CE的数量关系是 ;
    (2)如图2,当时,连接AM,CE,请判断AM和CE的数量关系,并说明理由;
    【深入探究】
    (3)如图3,当为任意锐角时,连接AM,CE,探究AM和CE的数量关系,并说明理由;
    【解决问题】
    (4)如图4,△ABC和△AEF都是等腰直角三角形,∠BAC=∠EAF=90°,AB=AC,AE=AF,M为BF的中点,连接CE,MA,MA的延长线交CE于点N,若,,则AN= .
    21.(2021·贵州遵义·统考二模)新定义:有一组邻边相等且对角互补的四边形叫做等补四边形.如图1,在四边形中,,,则四边形是一个等补四边形.在数学活动课上,巧巧小组对等补四边形进一步探究,发现平分.
    (1)巧巧小组提供的解题思路是:如图2,过点分别作于,交的延长线于,通过证明,得,再根据“角的内部到角的两边的距离相等的点在角的平分线上”得到平分.请你写出巧巧小组的完整证明过程;
    (2)如图3,在平面直角坐标系中,点、在轴上,以为直径的交轴于点、,点为弧上一动点(不与、重合),求证:四边形始终是一个等补四边形;
    (3)在(2)的条件下,如图4,已知,,巧巧小组提出了一个问题:连接,与的比值是否会随着点的移动而变化?若不变化,请求出其比值;若变化,请说明理由.
    22.(2021春·九年级课时练习)定义:对角互补且有一组邻边相等的四边形叫做友好四边形.
    (1)如图1,在友好四边形中,//,且,求的度数.

    (2)如图2,四边形内接于圆O,连结交于点E(不与点O重合),若E是的中点,求证:四边形是友好四边形.
    (3)在(2)的条件下,
    ①如图3,连结交于点K,若,,,求友好四边形的面积.
    ②如图4,若延长交于点F,交圆O于点G,若,,,求的长.
    ③如图5,延长至Q,使得,若友好四边形中有一组对边平行,且,求的正弦值.
    1.如图(1),在的内接四边形中,是的直径.与、与有怎样的数量关系?
    2.如图(2),若圆心不在的内接四边形的对角线上,问题(1)中发现的结论是否仍然成立?

    相关试卷

    中考数学一轮复习真题探究+变式训练专题30 半角模型(2份,原卷版+解析版):

    这是一份中考数学一轮复习真题探究+变式训练专题30 半角模型(2份,原卷版+解析版),文件包含中考数学一轮复习真题探究+变式训练专题30半角模型原卷版doc、中考数学一轮复习真题探究+变式训练专题30半角模型解析版doc等2份试卷配套教学资源,其中试卷共89页, 欢迎下载使用。

    中考数学一轮复习真题探究+变式训练专题29 一线三等角模型(2份,原卷版+解析版):

    这是一份中考数学一轮复习真题探究+变式训练专题29 一线三等角模型(2份,原卷版+解析版),文件包含中考数学一轮复习真题探究+变式训练专题29一线三等角模型原卷版doc、中考数学一轮复习真题探究+变式训练专题29一线三等角模型解析版doc等2份试卷配套教学资源,其中试卷共85页, 欢迎下载使用。

    中考数学一轮复习真题探究+变式训练专题28 截长补短模型(2份,原卷版+解析版):

    这是一份中考数学一轮复习真题探究+变式训练专题28 截长补短模型(2份,原卷版+解析版),文件包含中考数学一轮复习真题探究+变式训练专题28截长补短模型原卷版doc、中考数学一轮复习真题探究+变式训练专题28截长补短模型解析版doc等2份试卷配套教学资源,其中试卷共86页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map