搜索
    上传资料 赚现金
    英语朗读宝

    北师大版数学九下期末复习训练专项24 二次函数与将军饮马最值问题(2份,原卷版+解析版)

    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      北师大版数学九下期末复习训练专项24 二次函数与将军饮马最值问题(原卷版).doc
    • 解析
      北师大版数学九下期末复习训练专项24 二次函数与将军饮马最值问题(解析版).doc
    北师大版数学九下期末复习训练专项24  二次函数与将军饮马最值问题(原卷版)第1页
    北师大版数学九下期末复习训练专项24  二次函数与将军饮马最值问题(原卷版)第2页
    北师大版数学九下期末复习训练专项24  二次函数与将军饮马最值问题(原卷版)第3页
    北师大版数学九下期末复习训练专项24  二次函数与将军饮马最值问题(解析版)第1页
    北师大版数学九下期末复习训练专项24  二次函数与将军饮马最值问题(解析版)第2页
    北师大版数学九下期末复习训练专项24  二次函数与将军饮马最值问题(解析版)第3页
    还剩7页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北师大版数学九下期末复习训练专项24 二次函数与将军饮马最值问题(2份,原卷版+解析版)

    展开

    这是一份北师大版数学九下期末复习训练专项24 二次函数与将军饮马最值问题(2份,原卷版+解析版),文件包含北师大版数学九下期末复习训练专项24二次函数与将军饮马最值问题原卷版doc、北师大版数学九下期末复习训练专项24二次函数与将军饮马最值问题解析版doc等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。
    一)、已知两个定点一个动点:(对称轴为:动点所在的直线上)
    1、在一条直线m上,求一点P,使PA+PB最小;
    (1)点A、B在直线m两侧:

    (2)点A、B在直线同侧:


    A’ 是关于直线m的对称点。
    考点2:三条线段和最小值问题
    在直线m、n上分别找两点P、Q,使PA+PQ+QB最小。
    (1)两个点都在直线外侧:



    (2)一个点在内侧,一个点在外侧:
    (3)两个点都在内侧:
    (4)台球两次碰壁模型
    变式一:已知点A、B位于直线m,n 的内侧,在直线n、m分别上求点D、E点,使得围成的四边形ADEB周长最短.

    变式二:已知点A位于直线m,n 的内侧, 在直线m、n分别上求点P、Q点PA+PQ+QA周长最短.
    考点3:两条线段差最大值问题
    求两线段差的最大值问题 (运用三角形两边之差小于第三边)
    基本图形解析:
    1、在一条直线m上,求一点P,使PA与PB的差最大;
    (1)点A、B在直线m同侧:
    解析:延长AB交直线m于点P,根据三角形两边之差小于第三边,P’A—P’B<AB,而PA—PB=AB此时最大,因此点P为所求的点。
    (2)点A、B在直线m异侧:
    解析:过B作关于直线m的对称点B’,连接AB’交点直线m于P,此时PB=PB’,PA-PB最大值为AB’
    【考点1 两条线段和最小值问题】
    【典例1】(2019秋•东莞市校级期末)已知,抛物线y=ax2+bx+c,过A(﹣1,0)、B(3,0)、C(0,﹣3),M为顶点.
    (1)求抛物线的解析式;
    (2)在该抛物线的对称轴上找一点P,使得PA+PC的值最小,并求出P的坐标;
    【变式1】(2019•赤峰)如图,直线y=﹣x+3与x轴、y轴分别交于B、C两点,抛物线y=﹣x2+bx+c经过点B、C,与x轴另一交点为A,顶点为D.
    (1)求抛物线的解析式;
    (2)在x轴上找一点E,使EC+ED的值最小,求EC+ED的最小值;
    【考点2两条线段和最小值问题】
    【典例2】(2022•恩施州模拟)如图1,已知抛物线.点A(﹣1,2)在抛物线的对称轴上,是抛物线与y轴的交点,D为抛物线上一动点,过点D作x轴的垂线,垂足为点C.
    (1)直接写出h,k的值;
    (2)如图1,若点D的坐标为(3,m),点Q为y轴上一动点,直线QK与抛物线对称轴垂直,垂足为点K.探求DK+KQ+QC的值是否存在最小值,若存在,求出这个最小值及点Q的坐标;若不存在,请说明理由;
    【变式2】(2022•桂林)如图,抛物线y=﹣x2+3x+4与x轴交于A,B两点(点A位于点B的左侧),与y轴交于C点,抛物线的对称轴l与x轴交于点N,长为1的线段PQ(点P位于点Q的上方)在x轴上方的抛物线对称轴上运动.
    (1)直接写出A,B,C三点的坐标;
    (2)求CP+PQ+QB的最小值;
    【考点3两条线段差最大值问题】
    【典例3】(2020秋•椒江区校级月考)如图,已知抛物线y=ax2+bx+3(a≠0)经过点A(1,0)和点B(3,0),与y轴交于点C.
    (1)求此抛物线的解析式;
    (2)若点T为对称轴直线x=2上一点,则TC﹣TB的最大值为多少?
    【变式1】(2020•连云港)在平面直角坐标系xOy中,把与x轴交点相同的二次函数图象称为“共根抛物线”.如图,抛物线L1:y=x2﹣x﹣2的顶点为D,交x轴于点A、B(点A在点B左侧),交y轴于点C.抛物线L2与L1是“共根抛物线”,其顶点为P.
    (1)若抛物线L2经过点(2,﹣12),求L2对应的函数表达式;
    (2)当BP﹣CP的值最大时,求点P的坐标;
    1.(黑龙江二模)如图,抛物线y=x2+bx﹣2与x轴交于A、B两点,与y轴交于C点,且A(﹣1,0).
    (1)求抛物线的解析式及顶点D的坐标;
    (2)点M(m,0)是x轴上的一个动点,当CM+DM的值最小时,求m的值.
    2.(2022•宁远县模拟)如图,抛物线y=x2+bx+c与x轴交于A,B两点,其中点A的坐标为(﹣3,0),与y轴交于点C,点D(﹣2,﹣3)在抛物线上.
    (1)求抛物线的解析式;
    (2)抛物线的对称轴上有一动点P,求出PA+PD的最小值;
    3.(2022•乐业县二模)如图,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0)、B(3,0)两点,直线l与抛物线交于A、C两点,其中点C的横坐标是2.
    (1)求抛物线的函数表达式;
    (2)在抛物线的对称轴上找一点P,使得△PBC的周长最小,并求出点P的坐标;
    4.(2022•江阴市校级一模)如图1,在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x轴分别相交于A(﹣1,0)、B(3,0)两点,与y轴相交于点C(0,3).
    (1)求出这条抛物线的解析式及顶点M的坐标;
    (2)PQ是抛物线对称轴上长为1的一条动线段(点P在点Q上方),求AQ+QP+PC的最小值;
    5.(2022秋•黄冈月考)如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点,y与轴交于点C,抛物线的对称轴交x轴于点D.已知A(﹣1,0),C(0,3).
    (1)求抛物线的解析式;
    (2)在抛物线的对称轴上有一点M,使得|MB﹣MC|的值最大,求此点M的坐标;
    6.(2022•常德)如图,已知抛物线过点O(0,0),A(5,5),且它的对称轴为x=2,点B是抛物线对称轴上的一点,且点B在第一象限.
    (1)求此抛物线的解析式;
    (2)当△OAB的面积为15时,求B的坐标;
    (3)在(2)的条件下,P是抛物线上的动点,当PA﹣PB的值最大时,求P的坐标以及PA﹣PB的最大值.
    7.(2022春•良庆区校级期末)如图,已知抛物线的解析式为y=﹣x2﹣x+3,抛物线与x轴交于点A和点B,与y轴交点于点C.
    (1)请分别求出点A、B、C的坐标和抛物线的对称轴;
    (2)连接AC、BC,将△ABC绕点B顺时针旋转90°,点A、C的对应点分别为M、N,求点M、N的坐标;
    (3)若点P为该抛物线上一动点,在(2)的条件下,请求出使|NP﹣BP|最大时点P的坐标,并请直接写出|NP﹣BP|的最大值.

    相关试卷

    中考数学二轮复习压轴题培优训练专题12二次函数与线段和(将军饮马型)最值问题(2份,原卷版+解析版):

    这是一份中考数学二轮复习压轴题培优训练专题12二次函数与线段和(将军饮马型)最值问题(2份,原卷版+解析版),文件包含中考数学二轮复习压轴题培优训练专题12二次函数与线段和将军饮马型最值问题原卷版doc、中考数学二轮复习压轴题培优训练专题12二次函数与线段和将军饮马型最值问题解析版doc等2份试卷配套教学资源,其中试卷共87页, 欢迎下载使用。

    中考数学二轮复习难点突破训练专题17 最值问题中的将军饮马模型(2份,原卷版+解析版):

    这是一份中考数学二轮复习难点突破训练专题17 最值问题中的将军饮马模型(2份,原卷版+解析版),文件包含中考数学二轮复习难点突破训练专题17最值问题中的将军饮马模型原卷版doc、中考数学二轮复习难点突破训练专题17最值问题中的将军饮马模型解析版doc等2份试卷配套教学资源,其中试卷共54页, 欢迎下载使用。

    备战中考数学《重难点解读•专项训练》专题02 二次函数与将军饮马最值问题(知识解读):

    这是一份备战中考数学《重难点解读•专项训练》专题02 二次函数与将军饮马最值问题(知识解读),共16页。试卷主要包含了复习方法,复习难点等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map