所属成套资源:河北省各地区2024-2025学年八年级(上)数学期末模拟测试(含答案及详解)
河北省平乡县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解)
展开
这是一份河北省平乡县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解),共22页。试卷主要包含了选择题等内容,欢迎下载使用。
1. 下列防疫的图标中是轴对称图形的是( )
A. B. C. D.
2. 计算(4a3 12a2b 8a3b2) ÷ (4a2)的结果是( )
A. a 3b 2ab2B. a2 3b 2ab
C. a 2abD. 1.5a 3b
3. 在攻击人类的病毒中,某类新型冠状病毒体积较大,直径约为0.000 000 125米,含约3万个碱基, 拥有RNA病毒中最大的基因组,比艾滋病毒和丙型肝炎的基因组大三倍以上,比流感的基因组大两倍.0.000000125用科学记数法表示为( )
A. 1.25×10-6B. 1.25×10-7C. 1.25×106D. 1.25×107
4. 下列等式中,不成立的是( )
A. B.
C. D.
5. 等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边长为( )
A. 7cmB. 3cmC. 9cmD. 5cm
6. 若点,关于y轴对称,则点所在的象限是( )
A. 第一象限B. 第二象限C. 第三象限D. 第四象限
7. 下列各式变形中,是因式分解的是( )
A. B.
C. D.
8. 如图将直尺与含30°角的三角尺摆放在一起,若,则的度数是( )
A. B. C. D.
9. 如图所示,在△ABC中,,,D是BC的中点,连接AD,,垂足为E,则AE的长为( )
A. 4B. 6C. 2D. 1
10. 如图,在 ABC 中,ED / / BC ,ABC 和 ACB 的平分线分别交 ED 于点 G 、F ,若 FG 2 ,ED 6 ,则EB DC 的值为( )
A. 6B. 7
C. 8D. 9
11. 在ΔABC中给定下面几组条件:
①∠ACB=30°,BC=4cm,AC=5cm ②∠ABC=30°,BC=4cm,AC=3cm
③∠ABC=90°,BC=4cm,AC=5cm ④∠ABC=120°,BC=4cm,AC=5cm
若根据每组条件画图,则ΔABC不能够唯一确定的是( )
A. ①B. ②C. ③D. ④
12. 如图,在△ABC中,∠B=90°,∠A=30°,AC=a,AB=m,以点C为圆心,CB长为半径画弧交AC于点D,再以点A为圆心,AD长为半径画弧交AB于点E,则BE的长为( )
A. m﹣B. a﹣mC. 2a﹣mD. m﹣a
13. 如图,已知∠ABD=∠BAC,添加下列条件还不能判定△ABC≌△BAD的依据是( )
A. AC=BDB. ∠DAB=∠CBAC. ∠C=∠DD. BC=AD
14. 若关于x的分式方程-2=无解,则m的值为( )
A. 0B. 2C. 0或2D. 无法确定
15. 已知甲、乙、丙均为x的一次多项式,且其一次项系数皆为正整数,若甲与乙相乘得,乙与丙相乘得,则甲、丙之积与乙的差是( )
A. B.
C. D.
16. 如图,已知AB=AC,BE⊥AC于点E,CF⊥AB于点F,BE与CF交于点D,则下列结论中不正确的是( )
A. △ABE≅△ACFB. △BDF≅△CDE
C. 点D在平分线上D. 点D是CF的中点
二.填空题(本大题共3题,总计 12分)
17. 因式分解:____________
18. 将下列多项式分解因式,结果中不含因式的是_________(填上你认为正确的序号).①;②;③;④.
19. 丽丽在做一道计算题目的时候是这样分析的:这个算式里面每个括号内都是两数和的形式,跟最近学的乘法公式作比较,发现如果添加两数的差作为新的因式,就可以运用平方差公式进行运算,她尝试添了因式,很快得到计算结果.
①______________;
请参考丽丽的方法进行运算:
②的值为____________.
三.解答题(共7题,总计66分,解答应写出文字说明、证明过程或演算步骤)
20. (1)因式分解:;
(2)化简:.
21. 解分式方程:
(1)
(2)
22. 如图,△ABC的三个顶点的坐标分别是,,.
(1)在图中画出△ABC关于x轴对称的
(2)分别写出点A,B,C三点关于y轴对称的点,,的坐标;
(3)△ABC的面积为______.
23. 如图,AD平分∠BAC,∠EAD=∠EDA,∠B=54°.
(1)求∠EAC的度数;
(2)若∠CAD:∠E=2:5;求∠E的度数.
24. 【阅读】下列是多项式因式分解的过程:.请利用上述方法解决下列问题.
【应用】
(1)因式分解:;
(2)若x>5,试比较与0的大小关系;
(3)【灵活应用】若,求的值.
25. 一水果店主分两批购进某一种水果,第一批所用资金为2400元,因天气原因,水果涨价,第二批所用资金是2700元,但由于第二批单价比第一批单价每箱多10元,以致购买的数量比第一批少25%.
(1)该水果店主购进第一批这种水果的单价是多少元?
(2)该水果店主计两批水果的售价均定为每箱40元,实际销售时按计划无损耗售完第一批后,发现第二批水果品质不如第一批,于是该店主将售价下降a%销售,结果还是出现了20%的损耗,但这两批水果销售完后仍赚了不低于1716元,求a的最大值.
26. 已知∠MAN=120°,点C是∠MAN的平分线AQ上的一个定点,点B,D分别在AN,AM上,连接BD.
【发现】
(1)如图1,若∠ABC=∠ADC=90°,则∠BCD= °,△CBD是 三角形;
【探索】
(2)如图2,若∠ABC+∠ADC=180°,请判断△CBD的形状,并证明你的结论;
【应用】
(3)如图3,已知∠EOF=120°,OP平分∠EOF,且OP=1,若点G,H分别在射线OE,OF上,且△PGH为等边三角形,则满足上述条件的△PGH的个数一共有 .(只填序号)
①2个 ②3个 ③4个 ④4个以上
平乡县2024-2025学年八年级(上)数学期末模拟测试
参考答案及解析
一.选择题
1.【答案】:C
【解析】:解:轴对称图形定义:把一个图形沿某条直线对折,对折后直线两旁的部分能完全重合.发现A,B,D都不符合定义,所以A,B,D都错误,只有C符合,所以C正确.
故答案为C.
2.【答案】:A
【解析】:解:(4a3 12a2b 8a3b2) ÷ (4a2)
.
故选A
3.【答案】:B
【解析】:解:0.000000125=1.25×10-7,
故答案选:B
4.【答案】:C
【解析】:A、,故A不符合题意.
B、,故B不符合题意.
C、,故C符合题意.
D、,故D不符合题意.
故选:C.
5.【答案】:B
【解析】:当长是3cm的边是底边时,三边为3cm,5cm,5cm,等腰三角形成立;
当长是3cm的边是腰时,底边长是:13﹣3﹣3=7(cm),而3+3<7,不满足三角形的三边关系.
故底边长:3cm.
故选:B.
6.【答案】:C
【解析】:解:∵点A(a,3)、点B (2,-b)关于y轴对称,
∴a=2,-b=3,
解得:a=-2,b=-3,
∴点M(a,b)在第三象限,
故选:C.
7.【答案】:D
【解析】:解:A、等式的右边不是整式的积的形式,故A错误;
B、等式右边分母含有字母不是因式分解,故B错误;
C、等式的右边不是整式的积的形式,故C错误;
D、是因式分解,故D正确;
故选D.
8.【答案】:C
【解析】:如图,
∵∠BEF是△AEF的外角,∠1=20,∠F=30,
∴∠BEF=∠1+∠F=50,
∵AB∥CD,
∴∠2=∠BEF=50,
故选:C.
9.【答案】:C
【解析】:解: , ,D为BC中点,
,
,
,D为BC中点,
,
,
, ,
,
.
故答案为:C.
10.【答案】:C
【解析】:∵ED∥BC,
∴∠EGB=∠GBC,∠DFC=∠FCB,
∵∠GBC=∠GBE,∠FCB=∠FCD,
∴∠EGB=∠EBG,∠DCF=∠DFC,
∴BE=EG,CD=DF,
∵FG=2,ED=6,
∴EB+CD=EG+DF=EF+FG+FG+DG=ED+FG=8,
故选C.
11.【答案】:B
【解析】:解:①BC=4cm,AC=5cm,∠ACB=30°,满足“SAS”,所以根据这组条件画图,△ABC唯一;
②BC=4cm,AC=3cm,∠ABC=30°,根据这组条件画图,△ABC可能为锐角三角形,也可为钝角三角形;
③BC=4cm,AC=5cm,∠ABC=90°;满足“HL”,所以根据这组条件画图,△ABC唯一;
④BC=4cm,AC=5cm,∠ABC=120°,根据这组条件画图,△ABC唯一.
所以,ΔABC不能够唯一确定的是②.
故选:B
12.【答案】:A
【解析】:解:∵∠B=90°,∠A=30°,AC=a,
∴BC=AC=a,
∵以点C为圆心,CB长为半径画弧交AC于点D,
∴CD=BC=a,
∵以点A为圆心,AD长为半径画弧交AB于点E,
∴AD=AE=AC-CD=a,
∵AB=m,
∴BE=AB-AE=m-a,
故选:A.
13.【答案】:D
【解析】:由题意得,∠ABD=∠BAC,
A.在△ABC与△BAD中,
,
∴△ABC≌△BAD(SAS);
故选项正确;
B.在△ABC与△BAD中,
,
△ABC≌△BAD(ASA),
故选项正确;
C.在△ABC与△BAD中,
,
△ABC≌△BAD(AAS),
故选项正确;
D.在△ABC与△BAD中,
BC=AD,AB=BA,∠BAC=∠ABD(SSA),△ABC与△BAD不全等,故错误;
故选:D.
14.【答案】:C
【解析】:解:方程两边都乘以(x-3)得:
整理得:(m-2)x=2m-6,
由分式方程无解,
一种情况是未知数系数为0得:m-2=0,m=2,
一种情况是方程有增根得:x−3=0,即x=3,
把x=3代入整式方程得:m=0,
故选:C.
15.【答案】:A
【解析】:A
∵,
∵,
又∵甲与乙相乘得:,乙与丙相乘得:,
∴甲为,乙为,丙为,
∴甲、丙之积与乙的差是:
,
,
,
故选:A
16.【答案】:D
【解析】:解:A、∵AB=AC,BE⊥AC于E,CF⊥AB于F,∠A=∠A∴△ABE≌△ACF(AAS),正确;
B∵△ABE≌△ACF,AB=AC∴BF=CE,∠B=∠C,∠DFB=∠DEC=90°∴△BDF≌△CDE(ASA),正确;
C、∵△ABE≌△ACF,AB=AC∴BF=CE,∠B=∠C,∠DFB=∠DEC=90°∴DF=DE故点D在∠BAC的平分线上,正确;
D、无法判定,错误;
故选D.
【画龙点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL. 注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
二. 填空题
17.【答案】:
【解析】:解:
故答案为:.
18.【答案】: ④
【解析】:解:①,含因式;
②,含因式;
③,含因式;
④,不含因式;
故答案为:④.
19.【答案】: ①. ②.
【解析】:
=
=
=
=
故答案为:
三.解答题
20【答案】:
(1);
(2)
【解析】:
解:(1)原式=
;
(2)原式=
.
21【答案】:
(1)
(2)无解
【解析】:
【小问1详解】
解:方程两边同乘以得,
解这个整式方程,得,
检验:将代入最简公式分母,
原分式方程的解为.
【小问2详解】
将方程两边同时乘以得:
,
解这个整式方程,得:,
将代入,
所以是增根,
所以原分式方程无解.
【画龙点睛】本题考查的是分式方程的求解,解题的关键是将分式方程转化为整式方程,易错点是漏乘不含未知数的项.
22【答案】:
(1)见解析;(2)、、;(3)2.5.
【解析】:
解:(1)如图,即是所作的图形;
(2),,
点A,B,C三点关于y轴对称点,,的坐标为:
、、;
(3)如图,
故答案为:.
.
23【答案】:
(1)∠EAC=54°;
(2).
【解析】:
【小问1详解】
∵∠EAD=∠EDA,
∴∠EAC+∠CAD=∠B+∠BAD,
∵AD平分∠BAC,
∴∠CAD=∠BAD.
∴∠EAC=∠B.
∵∠B=54°,
∴∠EAC=54°.
【小问2详解】
设∠CAD=2x,则∠E=5x,∠DAB=2x,
∵∠B=54°,
∴∠EDA=∠EAD=2x+54°.
∵∠EDA+∠EAD+∠E=180°,
∴2x+54°+2x+54°+5x=180°.
解得x=8°.
∴∠E=5x=40°.
24【答案】:
(1)
(2)
(3)5
【解析】:
【小问1详解】
解:,
【小问2详解】
解:,,
∴x+1>0,x-5>0,
,
;
【小问3详解】
解:,
,
∵,
∴,
∴a=1,,
.
25【答案】:
(1)水果店主购进第一批这种水果的单价是20元;(2)a的最大值是30.
【解析】:
(1)设第一批水果的单价是x元,
,
解得,x=20,
经检验,x=20是原分式方程的解,
答:水果店主购进第一批这种水果的单价是20元;
(2)由题意可得,
,
解得,a≤30,
答:a的最大值是30.
26【答案】:
(1)60,等边;(2)等边三角形,证明见解析(3)④.
【解析】:
(1)如图1,连接BD,
∵∠ABC=∠ADC=90°,∠MAN=120°,
根据四边形的内角和得,∠BCD=360°-(∠ABC+∠ADC+∠MAN)=60°,
∵AC是∠MAN的平分线,CD⊥AM.CB⊥AN,
∴CD=CB,(角平分线的性质定理),
∴△BCD是等边三角形;
故答案为60,等边;
(2)如图2,同(1)得出,∠BCD=60°(根据三角形的内角和定理),
过点C作CE⊥AM于E,CF⊥AN于F,
∵AC是∠MAN的平分线,
∴CE=CF,
∵∠ABC+∠ADC=180°,∠ADC+∠CDE=180°,
∴∠CDE=∠ABC,
在△CDE和△CFB中,
,
∴△CDE≌△CFB(AAS),
∴CD=CB,
∵∠BCD=60°,
∴△CBD是等边三角形;
(3)如图3,
∵OP平分∠EOF,∠EOF=120°,
∴∠POE=∠POF=60°,在OE上截取OG'=OP=1,连接PG',
∴△G'OP是等边三角形,此时点H'和点O重合,
同理:△OPH是等边三角形,此时点G和点O重合,
将等边△PHG绕点P逆时针旋转到等边△PG'H',在旋转的过程中,
边PG,PH分别和OE,OF相交(如图中G'',H'')和点P围成的三角形全部是等边三角形,(旋转角的范围为(0°到60°包括0°和60°),
所以有无数个;
理由:同(2)的方法.
故答案为④.
相关试卷
这是一份河北省威县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解),共22页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份河北省唐县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解),共24页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份河北省卢龙县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解),共23页。试卷主要包含了选择题等内容,欢迎下载使用。