所属成套资源:河北省各地区2024-2025学年八年级(上)数学期末模拟测试(含答案及详解)
河北省临城县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解)
展开
这是一份河北省临城县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解),共22页。试卷主要包含了选择题等内容,欢迎下载使用。
1. (-12)0 的值是( )
A B. C. 1D. 1
2. 如图,甲、乙、丙、丁四人手中各有一个圈形卡片,则卡片中的式子是分式的有( )
A. 1个B. 2个C. 3个D. 4个
3. 如图所示是番茄果肉细胞结构图,番茄果肉细胞的直径约为0.0006米,将0.0006米用科学记数法表示为( )
A. 6×10-4米B. 6×10-3米C. 6×104米D. 6×10-5米
4. 分式﹣可变形为( )
A. ﹣B. C. ﹣D.
5. 若一个正多边形的一个内角为,则这个图形为正( )边形
A. 八B. 九C. 七D. 十
6. 下列各式变形中,是因式分解的是( )
A. B.
C. D.
7. 一个正多边形,它的一个内角恰好是一个外角的5倍,则这个正多边形的边数是( )
A. 十二B. 十一C. 十D. 九
8. 如果关于x的方程无解,则m的值是( )
A. 2B. 0C. 1D. –2
9. 练习中,小亮同学做了如下4道因式分解题,你认为小亮做得正确的有
① ②
③ ④
A. 1个B. 2个C. 3个D. 4个
10. 为半径画弧,交O′A′于点C′;
(3)以点C'为圆心,CD长为半径画弧,与第(2)步中所画的弧相交于点D′;
(4)过点D'画射线O′B′,则∠A′O′B′=∠AOB.
小聪作法正确的理由是( )
A. 由SSS可得△O′C′D′≌△OCD,进而可证∠A′O′B′=∠AOB
B. 由SAS可得△O′C′D′≌△OCD,进而可证∠A′O′B′=∠AOB
C. 由ASA可得△O′C′D′≌△OCD,进而可证∠A′O′B′=∠AOB
D. 由“等边对等角”可得∠A′O′B′=∠AOB
11. 如图,在等边△ABC中,AD、CE是△ABC的两条中线,,P是AD上一个动点,则最小值的是( )
A. 2.5B. 5C. 7.5D. 10
12. 如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是( )
A. 60°B. 50°C. 40°D. 30°
13. 如图,在长方形ABCD中,连接AC,以A为圆心,适当长为半径画弧,分别交AD,AC于点E,F,分别以E,F为圆心,大于的长为半径画弧,两弧在内交于点H,画射线AH交DC于点M.若,则的大小为( )
A. B. C. D.
14. 若,,则的值为( )
A. 4B. -4C. D.
15. 如图,在△ABC,△ADE中,,,,C,D,E三点在同一条直线上,连接.以下四个结论中:①;②;③;④.正确的个数是( )
A. 1个B. 2个C. 3个D. 4个
16. 已知甲做360个零件与乙做480个零件所用的时间相同,两人每天共做140个零件,设甲每天做x个零件,根据题意,可列方程为( )
A. B.
C. D.
二.填空题(本大题共3题,总计 12分)
17. 方程=的解为x=___.
18. 如图,在平面直角坐标系中,A(4,0),B(0,3),以线段AB为直角边在第一象限内作等腰直角三角形ABC,AB=AC,∠BAC=90°,则点C坐标为_______.
19. 如图,直线a∥b,点M、N分别为直线a和直线b上的点,连接MN,∠DMN=70°,点P是线段MN上一动点,直线DE始终经过点P,且与直线a、b分别交与点D、E,
(1)当△MPD与△NPE全等时,直接写出点P的位置:___________________;
(2)当△NPE是等腰三角形时,则∠NPE的度数为___________________.
三.解答题(共7题,总计66分,解答应写出文字说明、证明过程或演算步骤)
20. (1)因式分解:;
(2)化简:.
21. 先化简,再求值:,其中-2x2,请从x的范围中选入一个你喜欢的值代入,求此分式的值.
22. 如图,在平面直角坐标系中,A(1,2),B(3,1),C(-2,-1).
(1)在图中作出△ABC关于轴对称的.
(2)写出点的坐标(直接写答案).
(3)的面积为___________
23. 如图,AD平分∠BAC,∠EAD=∠EDA,∠B=54°.
(1)求∠EAC的度数;
(2)若∠CAD:∠E=2:5;求∠E的度数.
24. 已知,其中,
(1)判断A与B的大小;
(2)阅读下面对B分解因式的方法:.请解决下列两个问题:
①仿照上述方法分解因式:;
②指出A与C哪个大,并说明理由.
25. 某车间有甲乙两个小组,甲组的工作效率比乙组的工作效率高20%,甲组加工2700个零件所用的时间比乙组加工2000个零件所用的时间多半小时,求甲乙两组每小时各加工零件多少个?
26. 如图1,已知点P(2, 2),点A在x轴正半轴上运动,点B在y轴负半轴上运动,且PAPB.
(1)求证:PA⊥PB;
(2)若点A(8, 0),请直接写出B的坐标并求出OAOB的值;
(3)如图2,若点B在y轴正半轴上运动,其他条件不变,请直接写出OAOB的值.
临城县2024-2025学年八年级(上)数学期末模拟测试
参考答案及解析
一.选择题
1.【答案】:C
【解析】:解:
故选C
2.【答案】:B
【解析】:解:甲. 是分式;
乙.,π是一个数,故不是分式;
丙.是分式;
丁.,分母不含字母,不是分式.
故选:B
3.【答案】:A
【解析】:解:0.0006=6×10-4,
故选:A.
4.【答案】:B
【解析】: 可变式为
∴B正确
故选B
5.【答案】:D
【解析】:解:设所求正n边形边数为n, 则
解得
故答案为:D.
6.【答案】:D
【解析】:解:A、等式的右边不是整式的积的形式,故A错误;
B、等式右边分母含有字母不是因式分解,故B错误;
C、等式的右边不是整式的积的形式,故C错误;
D、是因式分解,故D正确;
故选D.
7.【答案】:A
【解析】:解:一个正多边形,它的一个内角恰好是一个外角的5倍,且一个内角与一个外角的和为,
这个正多边形的每个外角都相等,且外角的度数为,
这个正多边形的边数为,
故选:A.
8.【答案】:A
【解析】:解:方程去分母得:m+1﹣x=0,
解得x=m+1,
当分式方程分母为0,即x=3时,方程无解,
则m+1=3,
解得m=2.
故选A.
9.【答案】:B
【解析】::①x3+x=x(x2+1),不符合题意;
②x2-2xy+y2=(x-y)2,符合题意;
③a2-a+1不能分解,不符合题意;
④x2-16y2=(x+4y)(x-4y),符合题意,
故选B
10.【答案】:A
【解析】:解:由作图得OD=OC=OD′=OC′,CD=C′D′,
则根据“SSS”可判断△C′O′D′≌△COD.
故选:A.
11.【答案】:B
【解析】:解:连结PC,
∵△ABC为等边三角形,
∴AB=AC,
∵AD为中线,
∴AD⊥BC,BD=CD=,
∵点P在AD上,BP=CP,
∴PE+PB=PE+PC,
∵PE+PC≥CE
∴C、P、E三点共线时PE+CP最短=CE,
∵CE为△ABC的中线,
∴CE⊥AB,AE=BE=,
∵△ABC为等边三角形,
∴AB=BC,∠ABC=60°,
∴BE=BD,
在△ABD和△CBE中,
,
∴△ABD≌△CBE(SAS)
∴AD=CE=5,
∴PB+PE的最小值为5.
故选择B.
12.【答案】:C
【解析】:解:∵FE⊥DB,
∵∠DEF=90°,
∵∠1=50°,
∴∠D=90°﹣50°=40°,
∵AB∥CD,
∴∠2=∠D=40°.
故选C.
13.【答案】:B
【解析】:解:四边形是长方形,
,
,
由题意可知,平分,
,
,
故选:B.
14.【答案】:A
【解析】:因为,
所以,
因为,
所以,
联立方程组可得:
解方程组可得,
所以,
故选A.
15.【答案】:C
【解析】:解:①∵∠BAC=∠DAE=90°,
∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,
∵在△BAD和△CAE中,,
∴△BAD≌△CAE(SAS),
∴BD=CE,
∵
∴
故本选项错误;
②∵△ABC为等腰直角三角形,
∴∠ABC=∠ACB=45°,
∴∠ABD+∠DBC=45°,
∵△BAD≌△CAE,
∴∠ABD=∠ACE,
∴∠ACE+∠DBC=45°,
故本选项正确;
③∵∠ABD+∠DBC=45°,
∴∠ACE+∠DBC=45°,
∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,
则BD⊥CE,
故本选项正确;
④∵∠BAC=∠DAE=90°,
∴∠BAE+∠DAC=360°-90°-90°=180°,
故此选项正确,
综上,三个结论是正确的,
故选:C.
16.【答案】:A
【解析】:设甲每天做x个零件,根据题意得:
;
故选A.
二. 填空题
17.【答案】: x=-3
【解析】:解:方程两边同乘以x(x-3),
得2x=x-3,
解得x=-3.
经检验:x=-3是原方程的解,
故答案为:x=-3.
18.【答案】: (7,4)
【解析】:解:作CD⊥x轴于点D,则∠CDA=90°,
∵A(4,0),B(0,3),
∴
是等腰直角三角形,∠BAC=90°,
又∵∠BAD+∠ABO=90°,
∴∠ABO=∠CAD,
∠BAD+∠CAD=90°,
在△BOA和△ADC中,
∴△BOA≌△ADC(AAS),
∴BO=AD=3,OA=DC=4,
∴点C的坐标为(7,4);
故答案为:(7,4)
19.【答案】: ①. MN中点处 ②. 70°或40°或55°
【解析】:(1)∵a//b
∴∠DMN=∠PNE,∠MDE=∠DEN,
∴当△MPD与△NPE全等时,即△MPD≌△NPE时MP=NP,
即点P是MN的中点.
故答案为:MN中点处
(2)①若PN=PE时,
∵∠DMN=∠PNE=70°,
∴∠DMN =∠PNE=∠PEN=70°.
∴∠NPE=180°-∠PNE-∠PEN=180°-70°-70°=40°.
∴∠NPE =40°;
②若EP=EN时,则∠NPE =∠PNE=∠DMN =70°;
③若NP=NE时,则∠PEN=∠NPE,此时2∠NPE=180°-∠PNE=180°-∠DMN =180°-70°=110°
∴∠NPE =55°;
综上所述,∠NPE的值是40°或70°或55°.
故答案为:40°或70°或55°.
三.解答题
20【答案】:
(1);
(2)
【解析】:
解:(1)原式=
;
(2)原式=
.
21【答案】:
, 0
【解析】:
=
=-
当x=1时,
原式=-.
22【答案】:
(1)见解析;(2)A1(-1,2)、B1(-3,1)、C1(2,-1);(3)
【解析】:
解:(1)如图所示,△A1B1C1即为所求.
(2)由图知,A1(-1,2)、B1(-3,1)、C1(2,-1);
(3)△A1B1C1的面积=
23【答案】:
(1)∠EAC=54°;
(2).
【解析】:
【小问1详解】
∵∠EAD=∠EDA,
∴∠EAC+∠CAD=∠B+∠BAD,
∵AD平分∠BAC,
∴∠CAD=∠BAD.
∴∠EAC=∠B.
∵∠B=54°,
∴∠EAC=54°.
【小问2详解】
设∠CAD=2x,则∠E=5x,∠DAB=2x,
∵∠B=54°,
∴∠EDA=∠EAD=2x+54°.
∵∠EDA+∠EAD+∠E=180°,
∴2x+54°+2x+54°+5x=180°.
解得x=8°.
∴∠E=5x=40°.
24【答案】:
(1);
(2)①②当 ,,当时,,当时,,理由见解析.
【解析】:
(1)∵
,
∴.
(2)①
,
②
,
∵,
∴,
从而当时,,
当时,,
当时,.
25【答案】:
甲每小时加工600个零件,乙每小时加工500个零件
【解析】:
解:设乙组每小时加工的零件数为x个,则甲组每小时加工零件数为
(1+20%)x个.根据题意得:
=+,
解得:x=500,
经检验,x=500是原方程的解,
(1+20%)x=600,
答:甲每小时加工600个零件,乙每小时加工500个零件.
26【答案】:
(1)见解析
(2)(0, 4) ,4
(3)4
【解析】:
【小问1详解】
证明:如图,过点P作PE⊥x轴于点E,PF⊥y轴于点F,
∵点P(2, 2),
∴PE=PF=2.
在Rt△PEA和Rt△PFB中,
∵PE=PF,PA=PB,
∴Rt△PEA ≌Rt△PFB(HL).
∴∠PBF=∠PAE.
∴∠BPA=∠BOA=90°,
∴PA⊥PB;
【小问2详解】
解:由(1)得:Rt△APE≌Rt△BPF,
∴BF=AE,
∵A(8,0),
∴OA=8,
∴AE=OA-OE=8-2=6,
∴BF=AE=6,
∴OB=BF-OF=6-2=4,
∴点B的坐标为(0,-4);
∵AE=OA-OE=OA-2,BF=OF+OB=2+OB,
∴OA-2=2+OB,
∴OA-OB=4;
【小问3详解】
解:过点P作PM⊥x轴于点M,PN⊥y轴于点N,
∵P(2,2),
∴OM=ON=2,PM=PN=2
∵PA=PB,
∴Rt△APM≌Rt△BPN,
∴AM=BN,
∵AM=OA-OM=OA-2,BN=ON-OB=2-OB,
∴OA-2=2-OB,
∴OA+OB=4.
相关试卷
这是一份河北省内丘县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解),共24页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份河北省元氏县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解),共23页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份河北省井陉县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解),共21页。试卷主要包含了选择题等内容,欢迎下载使用。