所属成套资源:河北省各地区2024-2025学年八年级(上)数学期末模拟测试(含答案及详解)
河北省临漳县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解)
展开
这是一份河北省临漳县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解),共25页。试卷主要包含了选择题等内容,欢迎下载使用。
1. 下面四幅作品分别代表二十四节气中的“立春”、“芒种”、“白露”、“大雪”,其中是轴对称图形的是( )
A. B.
C. D.
2. 下列运算错误的是( )
A. B. C. D. a2÷a3=a-1 (a≠0)
3. 如图所示是番茄果肉细胞结构图,番茄果肉细胞的直径约为0.0006米,将0.0006米用科学记数法表示为( )
A. 6×10-4米B. 6×10-3米C. 6×104米D. 6×10-5米
4. 下列从左到右的运算是因式分解的是( )
A. 2x2﹣2x﹣1=2x(x﹣1)﹣1B. 4a2+4a+1=(2a+1)2
C. (a+b)(a﹣b)=a2﹣b2D. x2+y2=(x+y)2﹣2xy
5. 以下列各组线段的长为边能组成三角形的是( )
A. 2、5、8B. 2、5、3C. 6、6、2D. 9、6、2
6. 若M=(x-3)(x-4),N=(x-1)(x-6),则M与N的大小关系为()
A. M>NB. M=NC. M<ND. 由x的取值而定
7. 如图,小明书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么小明画图的依据是( )
A. SSSB. SASC. AASD. ASA
8. 如图,△ABC中,,,,则△ABC的周长为( )
A. 9B. 8C. 6D. 12
9. 若是完全平方式,则m的值为( )
A. 3B. C. 7D. 或7
10. 如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是( )
A. 60°B. 50°C. 40°D. 30°
11. 若关于x的分式方程-2=无解,则m的值为( )
A. 0B. 2C. 0或2D. 无法确定
12. 计算a﹣2b2•(a2b﹣2)﹣2正确的结果是( )
A. B. C. a6b6D.
13. 化简.这个代数式的值和a,b哪个字母的取值无关.( )
A. a和bB. a
C. bD. 不能确定
14. 如图,△ABC中,∠A=40°,AB的垂直平分线分别交AB,AC于点D,E,连接BE,则∠BEC的大小为( )
A. 40°B. 50°C. 80°D. 100°
15. 如图,将长方形ABCD的各边向外作正方形,若四个正方形周长之和为24,面积之和为12,则长方形ABCD的面积为( )
A. 4B. C. D. 6
16. 如图,在四边形ABCD中,∠C=40°,∠B=∠D=90°,E,F分别是BC,DC上的点,当ΔAEF的周长最小时,∠EAF的度数为( )
A. 100°B. 90°C. 70°D. 80°
二.填空题(本大题共3题,总计 12分)
17. 计算:(﹣2a2)3的结果是_____.
18. 如图,是△ABC的角平分线,于点F,DE=DG,△ADG和△AED的面积分别为10和4.
(1)过点D作于H,则_______(填“”);
(2)△EDF的面积为________.
19. 如图,在△ABC中,∠BAC和∠ABC的平分线AE、BF相交于点O,AE交BC于点E,BF交AC于点F,过点O作OD⊥BC于点D,则下列三个结论:①∠AOB=90°+∠C;②当∠C=60°时,AF+BE=AB;③若OD=a,AB+BC+CA=2b,则S△ABC=ab.其中正确的是 _____.
三.解答题(共7题,总计66分,解答应写出文字说明、证明过程或演算步骤)
20. 计算:
(1)
(2)
21. 已知(x+y)2=1,(x﹣y)2=49,求x2+y2与y的值.
22. 如图,在平面直角坐标系中,每个小正方形的边长均为1,点A的坐标为(﹣2,3).点B的坐标为(﹣3,1),点C的坐标为(1,﹣2).
(1)作出△ABC关于y轴对称的△A'B'C'.其中A',B',C'分别是A,B,C的对应点,不要求写作法;
(2)在x轴上找一点P,使得PB+PA的值最小.(不要求写作法)
23. 如图,在△ABC中,,D是的中点,垂直平分,交于点E,交于点F,M是直线上的动点.
(1)当时.
①若,则点到的距离为________
②若,,求的周长;
(2)若,且△ABC的面积为40,则的周长的最小值为________.
24. (1)若,求的值;
(2)请直接写出下列问题的答案:
①若,则___________;
②若,则__________.
25. 刘峰和李明相约周末去科技馆看展览,根据他们的谈话内容,试求李明乘公交车、刘峰骑自行车每小时各行多少千米?
26.
(1)【自主学习】填空:
如图1,点是的平分线上一点,点A在上,用圆规在上截取,连接,可得 ,其理由根据是 ;
(2)【理解运用】如图2,在中,,,平分,试判断和、之间的数量关系并写出证明过程.
(3)【拓展延伸】如图3,在中,,,分别是,的平分线,,交于点,若,,请直接写出的长.
临漳县2024-2025学年八年级(上)数学期末模拟测试
参考答案及解析
一.选择题
1.【答案】:D
【解析】:解:A、不是轴对称图形,本选项不符合题意;
B、不是轴对称图形,本选项不符合题意;
C、不是轴对称图形,本选项不符合题意;
D、是轴对称图形,本选项符合题意.
故选:D.
2.【答案】:A
【解析】:A. ,故该选项不正确,符合题意;
B. ,故该选项正确,不符合题意;
C. ,故该选项正确,不符合题意;
D. a2÷a3=a-1 (a≠0) ,故该选项正确,不符合题意;
故选:A.
3.【答案】:A
【解析】:解:0.0006=6×10-4,
故选:A.
4.【答案】:B
【解析】:解:A、没把一个多项式转化成几个整式积的形式,故本选项错误;
B、把一个多项式转化成几个整式积的形式,故本选项正确;
C、是整式的乘法,故本选项错误;
D、没把一个多项式转化成几个整式积的形式,故本选项错误;
故选:B.
5.【答案】:C
【解析】:解:根据三角形任意两边的和大于第三边,可知:
A、2+5<8,不能够组成三角形,故不符合题意;
B、2+3=5,不能组成三角形,故不符合题意;
C、2+6>7,能组成三角形,故符合题意;
D、2+6<9,不能组成三角形,故不符合题意;
故选:C.
6.【答案】:A
【解析】:解: M=(x-3)(x-4)=
N=(x-1)(x-6)=
即:
故选:A.
7.【答案】:D
【解析】:解:由图可知,三角形两角及夹边可以作出,
所以,依据是ASA.
故选:D.
8.【答案】:D
【解析】:解:在△ABC中,
, ,
,
,
∴△ABC为等边三角形,
,
∴△ABC的周长为:,
故答案为:D.
9.【答案】:D
【解析】:∵关于x的二次三项式是一个完全平方式,
∴m-2=±1×5,
∴m=7或-3,故D正确.
故选:D.
【画龙点睛】本题主要考查了完全平方公式的应用,解答此题的关键是要明确:.
10.【答案】:C
【解析】:解:∵FE⊥DB,
∵∠DEF=90°,
∵∠1=50°,
∴∠D=90°﹣50°=40°,
∵AB∥CD,
∴∠2=∠D=40°.
故选C.
11.【答案】:C
【解析】:解:方程两边都乘以(x-3)得:
整理得:(m-2)x=2m-6,
由分式方程无解,
一种情况是未知数系数为0得:m-2=0,m=2,
一种情况是方程有增根得:x−3=0,即x=3,
把x=3代入整式方程得:m=0,
故选:C.
12.【答案】:B
【解析】:原式=,
故选B.
【画龙点睛】本题考查了幂的混合运算,掌握幂的运算法则是解题的关键.
13.【答案】:C
【解析】:
,
则这个代数式的值与字母b的取值无关,
故选:C.
14.【答案】:C
【解析】:∵线段AB的垂直平分线交AB于D,交AC于E,
∴AE=BE,
∴∠ABE=∠A=40°,
∵∠BEC=∠A+∠ABE
∴∠BEC=40°+40°=80°.
故选:C.
15.【答案】:B
【解析】:解:设AB=a,AD=b,由题意得8a+8b=24,2a2+2b2=12,
即a+b=3,a2+b2=6,
∴,
即长方形ABCD的面积为,
故选:B.
16.【答案】:A
【解析】:解:作点A关于直线BC和直线CD的对称点G和H,连接GH,交BC、CD于点E、F,连接AE、AF,则此时△AEF的周长最小,
∵四边形的内角和为,
∴,
即①,
由作图可知:,,
∵的内角和为,
∴②,
方程①和②联立方程组,
解得.
故选:A.
二. 填空题
17.【答案】: ﹣8a6
【解析】:解:(﹣2a2)3
=(-2)3•(a2)3
=﹣8a6,
故答案为:﹣8a6.
18.【答案】: ①. = ②. 3
【解析】:解:(1)如图,
∵是的角平分线,,
∴=
故答案为:=;
(2)在Rt△DEF和Rt△DGH中
∴Rt△DEF≌Rt△DGH(HL)
∴
同理Rt△ADF≌Rt△ADH,
∴10-=4+
∴=3
故答案为:3.
19.【答案】: ①②
【解析】:解:∵∠BAC和∠ABC的平分线AE、BF相交于点O,
∴∠OBA=,,
∴∠AOB=180°﹣∠OBA﹣∠OAB
=
=
=
=,故①正确;
∵∠C=60°,
∴∠BAC+∠ABC=120°,
∵AE、BF分别平分∠BAC与∠ABC,
∴∠OAB+∠OBA==60°,
∴∠AOB=120°,
∴∠AOF=60°,
∴∠BOE=60°,
如图,在AB上取一点H,使BH=BE,
∵BF是∠ABC的角平分线,
∴∠HBO=∠EBO,
在△HBO与△EBO中,
,
∴△HBO≌△EBO(SAS),
∴∠BOH=∠BOE=60°,
∴∠AOH=180°﹣60°﹣60°=60°,
∴∠AOH=∠AOF,
在△HAO与△FAO中,
,
∴△HAO≌△FAO(ASA),
∴AH=AF,
∴AB=BH+AH=BE+AF,故②正确;
作OH⊥AC于H,OM⊥AB于M,
∵∠BAC与∠ABC的平分线相交于点O,
∴点O在∠C的平分线上,
∴OH=OM=OD=a,
∵AB+AC+BC=2b,
∴
=
=ab,故③错误,
故答案为:①②.
三.解答题
20【答案】:
(1)
(2)
【解析】:
【小问1详解】
解:原式
.
【小问2详解】
解:原式
.
21【答案】:
,的值为或或或
【解析】:
解:∵①,②,
∴①+②得:,解得;
∵,
或,
,
或,
或或或,
解得或或或,
,的值为或或或.
【画龙点睛】此题考查了完全平方公式、平方根的运用,熟练掌握完全平方公式和平方根的运算是解本题的关键.
22【答案】:
(1)如图,△A'B'C'即所求作.见解析;(2)如图,点P即为所求作,见解析.
【解析】:
(1)如图,△A'B'C'即为所求作.
(2)如图,点P即为所求作.
23【答案】:
(1)①1;②18
(2)14
【解析】:
【小问1详解】
①解:如图1,作于
∵,D是BC的中点
∴是的垂直平分线
∴,
∵
∴
∵,
∴
在△NBM和△ECM中
∵
∴
∴
故答案为:1.
②解:∵D是的中点,,
∴是的垂直平分线,
∴,
∴,
∴是等边三角形,
∴
∴的周长为
故答案为:18.
【小问2详解】
解:如图2,连接
∵ ,
解得
∵垂直平分
∴关于直线的对称点为
∴由两点之间线段最短可知与直线的交点即为
∴的周长的最小值为
∴的周长的最小值为14.
24【答案】:
(1)12;(2)①;②17
【解析】:
(1)∵,
∴,
∴;
(2)①∵,
∴=,
∴;
故答案为:;
②设a=4-x,b=5-x,
∵a-b=4-x-(5-x)=-1,
∴,
∴,
∵ab=,
∴,
∴,
故答案为:17.
25【答案】:
刘峰骑自行车每小时行20千米,李明乘公交车每小时行60千米
【解析】:
解:设刘峰骑自行车每小时行x千米,则李明乘公交车每小时行千米,
根据题意,得,
解得,
经检验,是所列分式方程的解,且符合题意,
∴(千米/时),
答:刘峰骑自行车每小时行20千米,李明乘公交车每小时行60千米.
26【答案】:
(1),SAS
(2),证明见解析
(3)5
【解析】:
(1)由角平分线的定义得出,根据可证明;
(2)先截取,连接,根据判定,得出,,,进而得出结论;
(3)在上取一点,使,证明,由全等三角形的性质得出,证明,由全等三角形的性质得出,则可求出答案.
【小问1详解】
解:点是的平分线上一点,
,
在和中,
,
,
故答案为:;;
【小问2详解】
.
证明:在上截取,
平分,
,
在和中,
,
,
,AD=DE,
,
,
,
即,
,
,
,
.
【小问3详解】
在上取一点,使,
在中,,
,
,
,
,
,
平分,
,
在和中,
,
,
,
,
,
是的平分线,
,
在和中,
,
,
,
.
【画龙点睛】本题是三角形综合题,主要考查了全等三角形的判定与性质,等边三角形的判定与性质,角平分线的性质以及等腰三角形的性质的综合应用,解决问题的关键是作辅助线构造全等三角形,根据线段的和差关系进行推导.刘峰:我查好地图了,你看看
李明:好的,我家门口的公交车站,正好有一趟到科技馆那站停的车,我坐明天的车.
刘峰:从地图上看,我家到科技馆的距离比你家近10千米,我就骑自行车去了.
李明:行,根据我的经验,公交车的速度一般是你骑自行车速度的3倍,那你明天早上点从家出发,如顺利,咱俩同时到达.
相关试卷
这是一份河北省内丘县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解),共24页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份河北省元氏县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解),共23页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份河北省井陉县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解),共21页。试卷主要包含了选择题等内容,欢迎下载使用。