年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    人教版数学九上期中模拟预测卷03(2份,原卷版+解析版)

    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      人教版数学九上期中模拟预测卷03(原卷版).doc
    • 解析
      人教版数学九上期中模拟预测卷03(解析版).doc
    人教版数学九上期中模拟预测卷03(原卷版)第1页
    人教版数学九上期中模拟预测卷03(原卷版)第2页
    人教版数学九上期中模拟预测卷03(原卷版)第3页
    人教版数学九上期中模拟预测卷03(解析版)第1页
    人教版数学九上期中模拟预测卷03(解析版)第2页
    人教版数学九上期中模拟预测卷03(解析版)第3页
    还剩5页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版数学九上期中模拟预测卷03(2份,原卷版+解析版)

    展开

    这是一份人教版数学九上期中模拟预测卷03(2份,原卷版+解析版),文件包含人教版数学九上期中模拟预测卷03原卷版doc、人教版数学九上期中模拟预测卷03解析版doc等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。
    考生注意:
    本试卷26道试题,满分120分,考试时间100分钟.
    本试卷分设试卷和答题纸.试卷包括试题与答题要求.作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.
    答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号码等相关信息.
    一.选择题(共10小题每题3分,满分30分)
    1.下列哪个方程是一元二次方程( )
    A.x+2y=1B.x2﹣2x+3=0C.x2+=3D.x2﹣2xy=0
    【分析】由一元二次方程的定义进行判断即可.
    【解答】解:A、该方程中含有2个未知数,不是一元二次方程,故本选项错误;
    B、该方程符合一元二次方程的定义,故本选项正确;
    C、该方程属于分式方程,不是一元二次方程,故本选项错误;
    D、该方程中含有2个未知数,不是一元二次方程,故本选项错误;
    故选:B.
    【点评】本题考查了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).
    2.抛物线y=2(x﹣1)2﹣5的顶点坐标是( )
    A.(1,5)B.(﹣1,﹣5)C.(1,﹣5)D.(﹣1,5)
    【分析】直接根据二次函数的解析式即可得出结论.
    【解答】解:∵抛物线的解析式为:y=2(x﹣1)2﹣5,
    ∴抛物线的顶点坐标为(1,﹣5).
    故选:C.
    【点评】本题考查的是二次函数的性质2,熟记二次函数的顶点式是解答此题的关键.
    3.二次函数y=﹣x2+2x+4的最大值为( )
    A.3B.4C.5D.6
    【分析】先利用配方法得到y=﹣(x﹣1)2+5,然后根据二次函数的最值问题求解.
    【解答】解:y=﹣(x﹣1)2+5,
    ∵a=﹣1<0,
    ∴当x=1时,y有最大值,最大值为5.
    故选:C.
    【点评】本题考查了二次函数的最值:当a>0时,抛物线在对称轴左侧,y随x的增大而减少;在对称轴右侧,y随x的增大而增大,因为图象有最低点,所以函数有最小值,当x=﹣时,y=;当a<0时,抛物线在对称轴左侧,y随x的增大而增大;在对称轴右侧,y随x的增大而减少,因为图象有最高点,所以函数有最大值,当x=﹣时,y=;确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标;当自变量取某个范围时,要分别求出顶点和函数端点处的函数值,比较这些函数值,从而获得最值.
    4.“打开电视机看电视节目,出现的第一个频道是重庆都市频道”这个事件是( )
    A.确定事件B.必然事件C.不可能事件D.不确定事件
    【分析】根据事件发生的可能性大小判断即可.
    【解答】解:“打开电视机看电视节目,出现的第一个频道是重庆都市频道”,是随机事件,属于不确定事件.
    故选:D.
    【点评】本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
    5.一元二次方程x2﹣8x﹣1=0配方后可变形为( )
    A.(x+4)2=17B.(x﹣4)2=17C.(x+4)2=15D.(x﹣4)2=15
    【分析】先移项,再两边配上一次项系数一半的平方可得.
    【解答】解:∵x2﹣8x﹣1=0,
    ∴x2﹣8x=1,
    ∴x2﹣8x+16=1+16,即(x﹣4)2=17,
    故选:B.
    【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.
    6.一个等腰三角形的两条边长分别是方程x2﹣7x+10=0的两根,则该等腰三角形的周长是( )
    A.12B.9C.13D.12或9
    【分析】求出方程的解,即可得出三角形的边长,再求出即可.
    【解答】解:x2﹣7x+10=0,
    (x﹣2)(x﹣5)=0,
    x﹣2=0,x﹣5=0,
    x1=2,x2=5,
    ①等腰三角形的三边是2,2,5
    ∵2+2<5,
    ∴不符合三角形三边关系定理,此时不符合题意;
    ②等腰三角形的三边是2,5,5,此时符合三角形三边关系定理,三角形的周长是2+5+5=12;
    即等腰三角形的周长是12.
    故选:A.
    【点评】本题考查了等腰三角形性质、解一元二次方程、三角形三边关系定理的应用等知识,关键是求出三角形的三边长.
    7.如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m,另一边减少了3m,剩余一块面积为20m2的矩形空地,则原正方形空地的边长是( )
    A.10mB.9mC.8mD.7m
    【分析】可设原正方形的边长为xm,则剩余的空地长为(x﹣2)m,宽为(x﹣3)m.根据长方形的面积公式方程可列出,进而可求出原正方形的边长.
    【解答】解:设原正方形的边长为xm,依题意有
    (x﹣3)(x﹣2)=20,
    解得:x1=7,x2=﹣2(不合题意,舍去)
    即:原正方形的边长7m.
    故选:D.
    【点评】本题考查了一元二次方程的应用.学生应熟记长方形的面积公式.另外求得剩余的空地的长和宽是解决本题的关键.
    8.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②c>0;③a+c<b;④b2﹣4ac>0,其中正确的个数是( )
    A.1B.2C.3D.4
    【分析】由二次函数的开口方向,对称轴0<x<1,以及二次函数与y的交点在x轴的上方,与x轴有两个交点等条件来判断各结论的正误即可.
    【解答】解:∵二次函数的开口向下,与y轴的交点在y轴的正半轴,
    ∴a<0,c>0,故②正确;
    ∵0<﹣<1,
    ∴b>0,故①错误;
    当x=﹣1时,y=a﹣b+c<0,
    ∴a+c<b,故③正确;
    ∵二次函数与x轴有两个交点,
    ∴Δ=b2﹣4ac>0,故④正确
    正确的有3个,
    故选:C.
    【点评】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).
    9.已知一条直线与圆有公共点,则这条直线与圆的位置关系是( )
    A.相离B.相切C.内交D.相切或相交
    【分析】由一条直线与圆有公共点,可得公共点可能是1个或2个,继而求得答案.
    【解答】解:∵一条直线与圆有公共点,
    ∴公共点可能是1个或2个,
    ∴这条直线与圆的位置关系是:相切或相交.
    故选:D.
    【点评】此题考查了直线与圆的位置关系.注意相切⇔直线和圆有1个公共点,相交⇔一条直线和圆有2个公共点.
    10.已知:如图,点A、B、C在⊙O上,∠ABC=50°,则∠AOC等于( )
    A.25°B.50°C.75°D.100°
    【分析】根据圆周角定理得出∠ABC=AOC,再求出答案即可.
    【解答】解:∵对的圆心角是∠AOC,对的圆周角是∠ABC,
    ∴∠ABC=AOC,
    ∵∠ABC=50°,
    ∴∠AOC=100°,
    故选:D.
    【点评】本题考查了圆周角定理,注意:一条弧所对的圆周角等于它所对的圆心角的一半.
    二.填空题(共8小题,每题3分,满分24分)
    11.在平面直角坐标系中,将点P(﹣3,2)绕点O(0,0)顺时针旋转90°,所得到的对应点P′的坐标为 (2,3) .
    【分析】根据旋转中心为点O,旋转方向顺时针,旋转角度90°,作出点P的对称图形P′,可得所求点的坐标.
    【解答】解:如图所示,由图中可以看出点P′的坐标为(2,3).
    故答案为:(2,3).
    【点评】本题考查了坐标与图形的变换﹣旋转,熟练掌握关于原点的对称点的坐标特征是解决问题的关键.
    12.如图,已知抛物线y=ax2+bx+c与直线y=k+m交于A(﹣3,﹣1)、B(0,3)两点,则关于x的不等式ax2+bx+c>kx+m的解集是 ﹣3<x<0 .
    【分析】根据图象写出抛物线在直线上方部分的x的取值范围即可.
    【解答】解:∵抛物线y=ax2+bx+c与直线y=kx+m交于A(﹣3,﹣1),B(0,3)两点,
    ∴不等式ax2+bx+c>kx+m的解集是﹣3<x<0.
    故答案为:﹣3<x<0.
    【点评】本题考查了二次函数与不等式的关系,主要利用了数形结合的思想.
    13.要组织一次篮球联赛,赛制为单循环形式(每两队之间都要赛一场),计划安排15场比赛,应邀请 6 支球队参加比赛.
    【分析】设邀请x个球队参加比赛,那么第一个球队和其他球队打(x﹣1)场球,第二个球队和其他球队打(x﹣2)场,以此类推可以知道共打(1+2+3+…+x﹣1)场球,然后根据计划安排15场比赛即可列出方程求解.
    【解答】解:设邀请x个球队参加比赛,
    依题意得1+2+3+…+x﹣1=15,
    即=15,
    ∴x2﹣x﹣30=0,
    ∴x=6或x=﹣5(不合题意,舍去).
    即应邀请6个球队参加比赛.
    故答案为:6.
    【点评】考查了一元二次方程的应用,此题和实际生活结合比较紧密,准确找到关键描述语,从而根据等量关系准确地列出方程是解决问题的关键.此题还要判断所求的解是否符合题意,舍去不合题意的解.
    14.一座石拱桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数关系式为y=﹣,当水面离桥拱顶的高度OC是4m时,水面的宽度AB为 16 m.
    【分析】根据题意,把y=﹣4直接代入解析式即可解答.
    【解答】解:根据题意B的纵坐标为﹣4,
    把y=﹣4代入y=﹣x2,
    得x=±8,
    ∴A(﹣8,﹣4),B(8,﹣4),
    ∴AB=16m.
    即水面宽度AB为16m.
    故答案为:16.
    【点评】此题考查了二次函数的实际应用,掌握二次函数的对称性是解决问题的关键.
    15.如图,一宽为2cm的刻度尺在圆上移动,当刻度尺的一边与圆相切时,另一边与圆两个交点处的读数恰好为“2”和“8”(单位:cm),则该圆的半径为 cm.
    【分析】根据垂径定理得BE的长,再根据勾股定理列方程求解即可.
    【解答】解:作OE垂直AB于E,交⊙O于D,
    设OB=r,
    根据垂径定理,BE=AB=×6=3cm,
    根据题意列方程得:(r﹣2)2+9=r2,解得r=,
    ∴该圆的半径为cm.
    【点评】本题考查了垂径定理的应用及勾股定理,根据题意得出BC=3是解答此题的关键.
    16.已知抛物线y=a(x+1)2+k(a>0)上有三点(﹣3,y1),B(,y2),C(2,y3),则y1,y2,y3的大小关系是 y2<y1<y3 (用“<”连接).
    【分析】先确定抛物线的开口方向和对称轴,然后利用二次函数的对称性和增减性即可得出结论.
    【解答】解:∵y=a(x+1)2+k(a>0),
    ∴抛物线开口向上,对称轴是:直线x=﹣1,
    ∴当x>﹣1时,y随x的增大而增大,
    ∵点(﹣3,y1)故对称轴的对称点为(1,y1),而﹣1<<1<2,
    ∴y2<y1<y3,
    故答案为:y2<y1<y3.
    【点评】本题考查了二次函数图象上点的坐标特征,熟知二次函数的性质是解题的关键.
    17.如图,P为⊙O外一点,PA、PB分别切⊙O于A、B,CD切⊙O于点E,分别交PA,PB于点C、D,若△PCD的周长为24,⊙O的半径是5,则点P到圆心O的距离 13 .
    【分析】根据切线长定理和勾股定理即可得到结论.
    【解答】解:∵PA、PB切⊙O于A、B,
    ∴PA=PB;
    同理,可得:EC=CA,DE=DB;
    ∵△PCD的周长为24,
    ∴PA+PB=24,
    ∴PA=PB=12,
    连接OA,OP,
    ∴∠OAP=90°,
    ∴OP===13,
    故答案为:13.
    【点评】此题主要考查的是切线长定理的应用.能够将△PCD的周长转换为切线PA、PB的长是解答此题的关键.
    18.图中是抛物线形拱桥,当水面宽为4米时,拱顶距离水面2米;当水面高度下降1米时,水面宽度增加 (2﹣4) 米(结果保留根号).
    【分析】设该抛物线为顶点在原点,其解析式为:y=ax2,用待定系数法求出a的值,再令y=﹣3,求得相应的x值,从而可得此时水面的宽,再减去4米即可.
    【解答】解:设该抛物线为顶点在原点,其解析式为:y=ax2
    由题意得:点(2,﹣2)和点(﹣2,﹣2)在抛物线上
    将(2,﹣2)代入y=ax2得:﹣2=4a
    ∴a=﹣
    ∴y=﹣x2
    当y=﹣3时,﹣3=﹣x2
    解得x=±
    ∴此时水面的宽度为:﹣(﹣)=2(米)
    水面的宽度增加(2﹣4)(米)
    故答案为:(2﹣4)(米)
    【点评】本题考查了二次函数在实际问题中的应用,根据题意正确求出抛物线的解析式,是解题的关键.
    三.解答题(共8小题,满分66分)
    19.用指定的方法解下列方程:
    (1)(2x+1)2=9;(直接开平方法)
    (2)3x2﹣5x﹣2=0;(配方法)
    (3)2x2﹣4x﹣5=0;(公式法)
    (4)(x﹣3)2﹣4x(3﹣x)=0.(因式分解法)
    【分析】(1)利用直接开平方法解出方程;
    (2)利用配方法解出方程;
    (3)利用公式法解出方程;
    (4)利用因式分解法解出方程.
    【解答】解:(1)(2x+1)2=9,
    开方得,2x+1=±3,
    解得,x1=1,x2=﹣2;
    (2)3x2﹣5x﹣2=0,
    移项得,3x2﹣5x=2,
    整理得,x2﹣x=,
    配方得,x2﹣x+=+,即(x﹣)2=,
    开方得,x﹣=±,
    解得,x1=2,x2=﹣.
    (3)2x2﹣4x﹣5=0,
    ∵a=2,b=﹣4,c=﹣5,Δ=b2﹣4ac=16﹣4×2×(﹣5)=56>0,
    ∴x==,
    ∴x1=1+,x2=1﹣;
    (4)(x﹣3)2﹣4x(3﹣x)=0,
    因式分解得,(x﹣3)(x﹣3+4x)=0,
    ∴x﹣3=0或5x﹣3=0,
    ∴x1=3,x2=.
    【点评】本题考查的是一元二次方程的解法,掌握直接开平方法、公式法、配方法、因式分解法解一元二次方程的一般步骤是解题的关键.
    20.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,点A,B的坐标分别为A(﹣2,4),B(﹣3,2).
    (1)画出坐标轴,画出△ABC绕点C顺时针旋转90°后△A'B'C';
    (2)求四边形ACA'B'的面积.
    【分析】(1)根据点A,B的坐标建立坐标轴即可,根据旋转的性质作图可得△A'B'C'.
    (2)利用割补法求四边形的面积即可.
    【解答】解:(1)如图,坐标轴和△A'B'C'即为所求.
    (2)四边形ACA'B'的面积为S△B'AC+S△A'B'C=+(3×3﹣﹣﹣)=8.
    ∴四边形ACA'B'的面积为8.
    【点评】本题考查作图﹣旋转变换、四边形的面积,熟练掌握旋转的性质是解答本题的关键.
    21.如图,在△ABC中,AB=AC,∠BAC=120°,E为BC上一点,以CE为直径作⊙O恰好经过A、C两点,PF⊥BC交BC于点G,交AC于点F.
    (1)求证:AB是⊙O的切线.
    (2)如果CF=2,CP=3,求⊙O的直径EC.
    【分析】(1)若要证明AB是⊙O的切线,则可连接AO,再证明AO⊥AB即可.
    (2)连接OP,设OG为x,在直角三角形FCG中,由CF和角ACB为30°,利用30°角所对的直角边等于斜边的一半及勾股定理求出CG的长,即可表示出半径OC和OP的长,在直角三角形CGP中利用勾股定理表示出PG的长,然后在直角三角形OPG中,利用勾股定理列出关于x的方程,求出方程的解即可得到x的值,然后求出直径即可.
    【解答】(1)证明:连接AO,
    ∵AB=AC,∠BAC=120°,
    ∴∠B=∠ACB=30°,
    ∵AO=CO,
    ∴∠0AC=∠OCA=30°,
    ∴∠BAO=120°﹣30°=90°,
    ∴AB是⊙O的切线;
    (2)解:连接OP,
    ∵PF⊥BC,
    ∴∠FGC=∠EGP=90°,
    ∵CF=2,∠FCG=30°,
    ∴FG=1,
    ∴在Rt△FGC中 CG===.
    ∵CP=3.
    ∴Rt△GPC中,PG===.
    设OG=x,则OP=OC=x+,
    在直角△OPG中,根据勾股定理得:
    OP2=OG2+PG2,即=x2+
    解得x=.
    ∴⊙O的直径EC=EG+CG=2x++=3.
    【点评】本题考查了圆的切线的判定和相似三角形的判定既性质,常用的切线的判定方法是连接圆心和某一点再证垂直;常用的相似判三角形的判定方法有:平行线,AA,SAS,SSS;常用到的相似性质:对应角相等;对应边的比值相等;面积比等于相似比的平方.
    22.已知关于x的方程(k﹣1)x2+(2k﹣3)x+k+1=0有两个不相等的实数根x1,x2.
    (1)求k的取值范围.
    (2)是否存在实数k,使方程的两实数根互为相反数?
    【分析】(1)因为方程(k﹣1)x2+(2k﹣3)x+k+1=0有两个不相等的实数根x1,x2.得出其判别式Δ>0,可解得k的取值范围;
    (2)假设存在两根的值互为相反数,根据根与系数的关系,列出对应的不等式即可解的k的值.
    【解答】解:(1)方程(k﹣1)x2+(2k﹣3)x+k+1=0有两个不相等的实数根x1,x2,
    可得k﹣1≠0,
    ∴k≠1且Δ=﹣12k+13>0,
    可解得k<且k≠1;
    (2)假设存在两根的值互为相反数,设为 x1,x2,
    ∵x1+x2=0,
    ∴﹣=0,
    ∴k=,
    又∵k<且k≠1
    ∴k不存在.
    【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.同时考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根与系数的关系.
    23.某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件;如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价为x元,每个月的销售量为y件.
    (1)求y与x的函数关系式并直接写出自变量x的取值范围;
    (2)设每月的销售利润为W,请直接写出W与x的函数关系式;
    (3)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
    【分析】(1)当售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件,y=260﹣x,50≤x≤80,当如果售价超过80元后,若再涨价,则每涨1元每月少卖3件,y=420﹣3x,80<x<140,
    (2)由利润=(售价﹣成本)×销售量列出函数关系式,
    (3)分别求出两个定义域内函数的最大值,然后作比较.
    【解答】解:(1)当50≤x≤80时,y=210﹣(x﹣50),即y=260﹣x,
    当80<x<140时,y=210﹣(80﹣50)﹣3(x﹣80),即y=420﹣3x.
    则,
    (2)由利润=(售价﹣成本)×销售量可以列出函数关系式
    w=﹣x2+300x﹣10400(50≤x≤80)
    w=﹣3x2+540x﹣16800(80<x<140),
    (3)当50≤x≤80时,w=﹣x2+300x﹣10400,
    当x=80有最大值,最大值为7200,
    当80<x<140时,w=﹣3x2+540x﹣16800,
    当x=90时,有最大值,最大值为7500,
    故售价定为90元.利润最大为7500元.
    【点评】本题主要考查二次函数的应用,应用二次函数解决实际问题比较简单.
    24.如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.
    (1)求抛物线的解析式和对称轴;
    (2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;
    (3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.
    【分析】(1)抛物线经过点A(0,4),B(1,0),C(5,0),可利用两点式法设抛物线的解析式为y=a(x﹣1)(x﹣5),代入A(0,4)即可求得函数的解析式,则可求得抛物线的对称轴;
    (2)点A关于对称轴的对称点A′的坐标为(6,4),连接BA′交对称轴于点P,连接AP,此时△PAB的周长最小,可求出直线BA′的解析式,即可得出点P的坐标.
    (3)在直线AC的下方的抛物线上存在点N,使△NAC面积最大.设N点的横坐标为t,此时点N(t,t2﹣t+4)(0<t<5),再求得直线AC的解析式,即可求得NG的长与△ACN的面积,由二次函数最大值的问题即可求得答案.
    【解答】解:(1)根据已知条件可设抛物线的解析式为y=a(x﹣1)(x﹣5),
    把点A(0,4)代入上式得:a=,
    ∴y=(x﹣1)(x﹣5)=x2﹣x+4=(x﹣3)2﹣,
    ∴抛物线的对称轴是:直线x=3;
    (2)存在,P点坐标为(3,).
    理由如下:
    ∵点A(0,4),抛物线的对称轴是直线x=3,
    ∴点A关于对称轴的对称点A′的坐标为(6,4)
    如图1,连接BA′交对称轴于点P,连接AP,此时△PAB的周长最小.
    设直线BA′的解析式为y=kx+b,
    把A′(6,4),B(1,0)代入得,
    解得,
    ∴y=x﹣,
    ∵点P的横坐标为3,
    ∴y=×3﹣=,
    ∴P(3,).
    (3)在直线AC的下方的抛物线上存在点N,使△NAC面积最大.
    设N点的横坐标为t,此时点N(t,t2﹣t+4)(0<t<5),
    如图2,过点N作NG∥y轴交AC于G;作AD⊥NG于D,
    由点A(0,4)和点C(5,0)可求出直线AC的解析式为:y=﹣x+4,
    把x=t代入得:y=﹣t+4,则G(t,﹣t+4),
    此时:NG=﹣t+4﹣(t2﹣t+4)=﹣t2+4t,
    ∵AD+CF=CO=5,
    ∴S△ACN=S△ANG+S△CGN=AD×NG+NG×CF=NG•OC=×(﹣t2+4t)×5=﹣2t2+10t=﹣2(t﹣)2+,
    ∴当t=时,△CAN面积的最大值为,
    由t=,得:y=t2﹣t+4=﹣3,
    ∴N(,﹣3).
    【点评】本题主要考查了二次函数与方程、几何知识的综合应用,解题的关键是方程思想与数形结合思想的灵活应用.
    25.已知△ABC内接于⊙O,AB=AC,∠BAC=42°,点D是⊙O上一点.
    (Ⅰ)如图①,若BD为⊙O的直径,连接CD,求∠DBC和∠ACD的大小;
    (Ⅱ)如图②,若CD∥BA,连接AD,过点D作⊙O的切线,与OC的延长线交于点E,求∠E的大小.
    【分析】(Ⅰ)如图①,利用等腰三角形的性质和三角形内角和计算出∠ABC=69°,再根据圆周角定理得到∠BCD=90°,∠D=42°,利用互余计算出∠DBC的度数,利用圆周角定理计算∠ABD的度数,从而得到∠ACD的度数;
    (Ⅱ)如图②,连接OD,利用平行线的性质得到∠ACD=∠BAC=42°,利用圆内接四边形的性质计算出∠ADC=111°,再根据三角形内角和计算出∠CAD=27°,接着利用圆周角定理得到∠COD=54°,然后根据切线的性质得到∠ODE=90°,最后利用互余计算出∠E的度数.
    【解答】解:(Ⅰ)如图①,∵AB=AC,
    ∴∠ABC=∠ACB=(180°﹣∠BAC)=×(180°﹣42°)=69°,
    ∵BD为直径,
    ∴∠BCD=90°,
    ∵∠D=∠BAC=42°,
    ∴∠DBC=90°﹣∠D=90°﹣42°=48°;
    ∴∠ACD=∠ABD=∠ABC﹣∠DBC=69°﹣48°=21°;
    (Ⅱ)如图②,连接OD,
    ∵CD∥AB,
    ∴∠ACD=∠BAC=42°,
    ∵四边形ABCD为⊙O的内接四边形,
    ∴∠B+∠ADC=180°,
    ∴∠ADC=180°﹣∠B=180°﹣69°=111°,
    ∴∠CAD=180°﹣∠ACD﹣∠ADC=180°﹣42°﹣111°=27°,
    ∴∠COD=2∠CAD=54°,
    ∵DE为切线,
    ∴OD⊥DE,
    ∴∠ODE=90°,
    ∴∠E=90°﹣∠DOE=90°﹣54°=36°.
    【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理.
    26.如图1,抛物线y=﹣x2+mx+n交x轴于点A(﹣2,0)和点B,交y轴于点C(0,2).
    (1)求抛物线的函数表达式;
    (2)若点M在抛物线上,且S△AOM=2S△BOC,求点M的坐标;
    (3)如图2,设点N是线段AC上的一动点,作DN⊥x轴,交抛物线于点D,求线段DN长度的最大值.
    【分析】(1)把A(﹣2,0),C(0,2)代入抛物线的解析式求解即可;
    (2)由(1)知,该抛物线的解析式为y=﹣x2﹣x+2,则易得B(1,0).然后依据S△AOM=2S△BOC列方程求解即可;
    (3)设直线AC的解析式为y=kx+t,将A(﹣2,0),C(0,2)代入可求得直线AC的解析式,设N点坐标为(x,x+2),(﹣2≤x≤0),则D点坐标为(x,﹣x2﹣x+2),然后列出ND与x的函数关系式,最后再利用配方法求解即可.
    【解答】解:(1)A(﹣2,0),C(0,2)代入抛物线的解析式y=﹣x2+mx+n,
    得,解得,
    ∴抛物线的解析式为y=﹣x2﹣x+2.
    (2)由(1)知,该抛物线的解析式为y=﹣x2﹣x+2,则易得B(1,0),设M(m,n)然后依据S△AOM=2S△BOC列方程可得:
    •AO×|n|=2××OB×OC,
    ∴×2×|﹣m2﹣m+2|=2,
    ∴m2+m=0或m2+m﹣4=0,
    解得x=0或﹣1或,
    ∴符合条件的点M的坐标为:(0,2)或(﹣1,2)或(,﹣2)或(,﹣2).
    (3)设直线AC的解析式为y=kx+b,将A(﹣2,0),C(0,2)代入
    得到,解得,
    ∴直线AC的解析式为y=x+2,
    设N(x,x+2)(﹣2≤x≤0),则D(x,﹣x2﹣x+2),
    ND=(﹣x2﹣x+2)﹣(x+2)=﹣x2﹣2x=﹣(x+1)2+1,
    ∵﹣1<0,
    ∴x=﹣1时,ND有最大值1.
    ∴ND的最大值为1.
    【点评】本题主要考查的是二次函数的综合应用,解答本题主要应了待定系数法求一次函数、二次函数的解析式,解题的关键是学会构建二次函数,利用二次函数解决最值问题,属于中考压轴题.

    相关试卷

    人教版数学九上期中模拟预测卷02(2份,原卷版+解析版):

    这是一份人教版数学九上期中模拟预测卷02(2份,原卷版+解析版),文件包含人教版数学九上期中模拟预测卷02原卷版doc、人教版数学九上期中模拟预测卷02解析版doc等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。

    人教版数学九上期中模拟预测卷01(2份,原卷版+解析版):

    这是一份人教版数学九上期中模拟预测卷01(2份,原卷版+解析版),文件包含人教版数学九上期中模拟预测卷01原卷版doc、人教版数学九上期中模拟预测卷01解析版doc等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。

    人教版数学九上期末模拟预测卷03(2份,原卷版+解析版):

    这是一份人教版数学九上期末模拟预测卷03(2份,原卷版+解析版),文件包含人教版数学九上期末模拟预测卷03原卷版doc、人教版数学九上期末模拟预测卷03解析版doc等2份试卷配套教学资源,其中试卷共41页, 欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map