年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    人教版数学八上期末提升训练专题02 三角形的全等六大重难模型(期末真题精选)(2份,原卷版+解析版)

    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      人教版数学八上期末提升训练专题02 三角形的全等六大重难模型(期末真题精选)(原卷版).doc
    • 解析
      人教版数学八上期末提升训练专题02 三角形的全等六大重难模型(期末真题精选)(解析版).doc
    人教版数学八上期末提升训练专题02 三角形的全等六大重难模型(期末真题精选)(原卷版)第1页
    人教版数学八上期末提升训练专题02 三角形的全等六大重难模型(期末真题精选)(原卷版)第2页
    人教版数学八上期末提升训练专题02 三角形的全等六大重难模型(期末真题精选)(原卷版)第3页
    人教版数学八上期末提升训练专题02 三角形的全等六大重难模型(期末真题精选)(解析版)第1页
    人教版数学八上期末提升训练专题02 三角形的全等六大重难模型(期末真题精选)(解析版)第2页
    人教版数学八上期末提升训练专题02 三角形的全等六大重难模型(期末真题精选)(解析版)第3页
    还剩7页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版数学八上期末提升训练专题02 三角形的全等六大重难模型(期末真题精选)(2份,原卷版+解析版)

    展开

    这是一份人教版数学八上期末提升训练专题02 三角形的全等六大重难模型(期末真题精选)(2份,原卷版+解析版),文件包含人教版数学八上期末提升训练专题02三角形的全等六大重难模型期末真题精选原卷版doc、人教版数学八上期末提升训练专题02三角形的全等六大重难模型期末真题精选解析版doc等2份试卷配套教学资源,其中试卷共46页, 欢迎下载使用。
    实战训练
    一.一线三等角模型
    1.如图,在平面直角坐标系中,点A的坐标是(4,0),点B的坐标是(0,3),把线段BA绕点B逆时针旋转90°后得到线段BC,则点C的坐标是( )
    A.(3,4)B.(4,3)C.(4,7)D.(3,7)
    2.已知正方形OBCD在平面直角坐标系中的位置如图所示M为边OB上一点,且点M的坐标为(a,b).将正方形OBCD绕原点O顺时针旋转,每秒旋转45°,则旋转2022秒后,点M的坐标为( )
    A.(b,a)B.(﹣a,b)C.(﹣b,a)D.(﹣a,﹣b)
    3.问题提出
    在等腰Rt△ABC中,AB=BC,∠ABC=90°,点D,E分别在边AB,AC上(不同时在点A),连接DE,将线段DE绕点E顺时针旋转90°,得到线段FE,连接AF,探究AF与BC的位置关系.
    问题探究
    (1)先将问题特殊化,如图1,点D,E分别与点B,C重合,直接写出AF与BC的位置关系;
    (2)再探讨一般情形,如图2,证明(1)中的结论仍然成立.
    问题拓展
    如图3,在等腰Rt△ABC中,AB=BC,∠ABC=90°,D为AB的中点,点E在边AC上,连接DE,将线段DE绕点E顺时针旋转90°,得到线段FE,点G是点C关于直线AB的对称点,若点G,D,F在一条直线上,求的值.
    4.如图,方格纸中的每个小正方形的边长均为1,小正方形的顶点称为格点.已知A,B,C都是格点.
    (1)小明发现图2中∠ABC是直角,请在图1补全他的思路;
    (2)请借助图3用一种不同于小明的方法说明∠ABC是直角.
    5.如图,∠BAC=90°,AD是∠BAC内部一条射线,若AB=AC,BE⊥AD于点E,CF⊥AD于点F.
    求证:△ABE≌△CAF.
    6.【问题提出】
    (1)已知:如图1,AD⊥DE于点D,BE⊥DE于点E,点C在线段DE上,AC=BC且AC⊥BC,求证:△ADC≌△CEB.
    【问题解决】
    (2)如图2,点D,C,E在直线l上.点A,B在l的同侧,AC⊥BC,若AD=AC=BC=BE=5cm,CD=6cm,求CE的长.
    二.手拉手模型--旋转
    7.如图,C为线段AB上一动点(不与点A、B重合),在AB的上方分别作△ACD和△BCE,且AC=DC,BC=EC,∠ACD=∠BCE,AE、BD交于点P.有下列结论:①AE=DB;②∠APB=2∠ADC;③当AC=BC时,PC⊥AB;④PC平分∠APB.其中正确的是 .(把你认为正确结论的序号都填上)
    8.如图所示,已知△ABC和△BDE均为等边三角形,连接AD、CE,若∠BAD=α,则∠BCE= .
    9.如图,在△ABC中,∠ACB=90°,∠B=30°,AC=6,点D是边CB上的动点,连接AD,将线段AD绕点A顺时针旋转60°,得到线段AP,连接CP,则线段CP的最小值 .
    10.已知点D是△ABC外一点,连接AD,BD,CD,∠BAC=∠BDC=α.
    (1)【特例体验】
    如图1,AB=BC,α=60°,则∠ADB的度数为 ;
    (2)【类比探究】
    如图2,AB=BC,求证:∠ADB=∠BDC;
    (3)【拓展迁移】
    如图3,α=60°,∠ACB+∠BCD=180°,CE⊥BD于点E,AC=kDE,直接写出的值(用k的代数式表示).
    三.倍长中线模型
    11.如图,在△ABC中,∠ABC=45°,AM⊥BC于点M,点D在AM上,且DM=CM,F是BC的中点,连接FD并延长,在FD的延长线上有一点E,连接CE,且CE=CA,∠BDF=36°,则∠E= .
    12.如图,△ABC中,AB=6,AC=4,D是BC的中点,AD的取值范围为 .
    13.(1)方法呈现:如图①:在△ABC中,若AB=6,AC=4,点D为BC边的中点,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE,可证△ACD≌△EBD,从而把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断中线AD的取值范围是(直接写出范围即可).这种解决问题的方法我们称为倍长中线法;
    (2)探究应用:
    如图②,在△ABC中,点D是BC的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,判断BE+CF与EF的大小关系并证明;
    (3)问题拓展:
    如图③,在四边形ABCD中,AB∥CD,AF与DC的延长线交于点F、点E是BC的中点,若AE是∠BAF的角平分线.试探究线段AB,AF,CF之间的数量关系,并加以证明.
    四.平行+中点模型
    14.如图,公园有一条“Z”字形道路AB﹣BC﹣CD,其中AB∥CD,在E、M、F处各有一个小石凳,且BE=CF,M为BC的中点,连接EM、MF,请问石凳M到石凳E、F的距离ME、MF是否相等?说出你推断的理由.
    15.△ABC中,P是BC边上的一点,过P作直线交AB于M,交AC的延长线于N,且PM=PN,MF∥AN,
    (1)求证:△PMF≌△PNC;
    (2)若AB=AC,求证:BM=CN.
    16.如图,已知梯形ABCD中,AD∥BC,E为AB中点,DE⊥EC.
    求证:(1)DE平分∠ADC;
    (2)AD+BC=DC.
    五.角平分线+垂直模型
    17.已知:如图,AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且∠ADC+∠B=180°.
    (1)若AB=12,AD=8,则AF= .
    (2)若△ABC的面积是24,△ADC的面积是16,则△BEC的面积等于 .
    18.如图,AD是△ABC的角平分线,过点C作CE⊥AD,垂足为点E,延长CE与AB相交于点F,连接DF,若∠BAC=60°,∠B=40°,则∠BDF的度数为 °.
    19.如图:在∠EAF的平分线上取点B作BC⊥AF于点C,在直线AC上取一动点P.在直线AE上取点Q使得BQ=BP.
    (1)如图1,当点P在点线段AC上时,∠BQA+∠BPA= °;
    (2)如图2,当点P在CA延长线上时,探究AQ、AP、AC三条线段之间的数量关系,说明理由;
    (3)在满足(1)的结论条件下,当点P运动到在射线AC上时,直接写出AQ、AP、PC三条线段之间的数量关系为: .
    六.半角模型
    20.(1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF∠BAD,线段EF、BE、FD之间的关系是 ;(不需要证明)
    (2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF∠BAD,(1)中的结论是否仍然成立?若成立,请证明.若不成立,请写出它们之间的数量关系,并证明.
    (3)如图3,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD延长线上的点,且∠EAF∠BAD,(1)中的结论是否仍然成立?若成立,请证明.若不成立,请写出它们之间的数量关系,并证明.
    21.(1)问题背景:如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点,且∠EAF=60°,请探究图中线段BE,EF,FD之间的数量关系是什么?
    小明探究此问题的方法是:延长FD到点G,使DG=BE,连接AG.先证明
    △ABE≌△ADG,得AE=AG;再由条件可得∠EAF=∠GAF,证明△AEF≌△AGF,进而可得线段BE,EF,FD之间的数量关系是 .
    (2)拓展应用:
    如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF∠BAD.问(1)中的线段BE,EF,FD之间的数量关系是否还成立?若成立,请给出证明;若不成立,请说明理由.
    先利用勾股定理求出△ABC的三条边长,可得AB= ,BC= ,AC= .从而可得三边数量关系为 ,根据 ,可以证明∠ABC是直角.

    相关试卷

    人教版数学八上期末提升训练专题05 乘法公式与因式分解七大重难考点(期末真题精选)(2份,原卷版+解析版):

    这是一份人教版数学八上期末提升训练专题05 乘法公式与因式分解七大重难考点(期末真题精选)(2份,原卷版+解析版),文件包含人教版数学八上期末提升训练专题05乘法公式与因式分解七大重难考点期末真题精选原卷版doc、人教版数学八上期末提升训练专题05乘法公式与因式分解七大重难考点期末真题精选解析版doc等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。

    人教版数学八上期末提升训练专题04 幂的运算重难点精练(九大考点)(期末真题精选)(2份,原卷版+解析版):

    这是一份人教版数学八上期末提升训练专题04 幂的运算重难点精练(九大考点)(期末真题精选)(2份,原卷版+解析版),文件包含人教版数学八上期末提升训练专题04幂的运算重难点精练九大考点期末真题精选原卷版doc、人教版数学八上期末提升训练专题04幂的运算重难点精练九大考点期末真题精选解析版doc等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。

    人教版数学八上期末提升训练专题03 轴对称十大重难题型(期末真题精选)(2份,原卷版+解析版):

    这是一份人教版数学八上期末提升训练专题03 轴对称十大重难题型(期末真题精选)(2份,原卷版+解析版),文件包含人教版数学八上期末提升训练专题03轴对称十大重难题型期末真题精选原卷版doc、人教版数学八上期末提升训练专题03轴对称十大重难题型期末真题精选解析版doc等2份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map