年终活动
搜索
    上传资料 赚现金

    北师大版数学九上专题1.27 《特殊平行四边形》全章复习与巩固(基础篇)(专项练习)(含答案)

    立即下载
    加入资料篮
    北师大版数学九上专题1.27 《特殊平行四边形》全章复习与巩固(基础篇)(专项练习)(含答案)第1页
    北师大版数学九上专题1.27 《特殊平行四边形》全章复习与巩固(基础篇)(专项练习)(含答案)第2页
    北师大版数学九上专题1.27 《特殊平行四边形》全章复习与巩固(基础篇)(专项练习)(含答案)第3页
    还剩28页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北师大版数学九上专题1.27 《特殊平行四边形》全章复习与巩固(基础篇)(专项练习)(含答案)

    展开

    这是一份北师大版数学九上专题1.27 《特殊平行四边形》全章复习与巩固(基础篇)(专项练习)(含答案),共31页。
    专题1.27 《特殊平行四边形》全章复习与巩固(基础篇)(专项练习)一、单选题1.如图,在四边形ABCD中,,且AD=DC,则下列说法:①四边形ABCD是平行四边形;②AB=BC;③AC⊥BD;④AC平分∠BAD;⑤若AC=6,BD=8,则四边形ABCD的面积为24,其中正确的有(       )A.2个 B.3个 C.4个 D.5个2.如图,在菱形中,直线分别交、、于点、和.且,连接.若,则为(       )A. B. C. D.3.两个边长为2的等边三角形如图所示拼凑出一个平行四边形,则对角线的长为(       )A.2 B.4 C. D.4.如图,在菱形中,,点为对角线上一点,为边上一点,连接、、,若,,则的度数为(       )A. B. C. D.5.如图,在△ABC中,AC=BC,D、E分别是边AB、AC的中点,△ADE≌△CFE,则四边形ADCF一定是(       )A.菱形 B.矩形 C.正方形 D.无法确定6.如图,在中,、分别是直角边、的中点,若,则边上的中线的长为(       )A.5 B.6 C. D.107.如图,在矩形ABCD中,EF是对角线AC的垂直平分线,分别交AB,CD于点E,F,若,则EF的长为(       )A.4 B.8 C. D.8.如图,矩形的顶点,,,将矩形以原点为旋转中心,顺时针旋转75°之后点的坐标为(       )A. B. C. D.9.如图所示的是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中,,则的值是(       )A.128 B.64 C.32 D.14410.正方形ABCD的边长为4,点M,N在对角线AC上(可与点A,C重合),MN=2,点P,Q在正方形的边上.下面四个结论中错误的是(        )A.存在无数个四边形PMQN是平行四边形B.存在无数个四边形PMQN是矩形C.存在无数个四边形PMQN是菱形D.至少存在一个四边形PMQN是正方形11.如图,在正方形ABCD中,等边的顶点E,F分别在边BC和CD上,则等于(       )A. B. C. D.12.如图,在Rt△ABC中,∠BAC=90°,D是BC中点,分别以AB,AC为边向外作正方形ABEF和正方形ACGH,连接FD、HD,若BC=10,则阴影部分的面积是(       )A. B. C.25 D.50二、填空题13.如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD,已知AB=6cm,BC=8cm,则四边形ODEC的周长为______cm.14.如图,平行四边形的对角线与交于点,请你添加一个条件使它是菱形,你添加的条件是______.15.如图,已知菱形ABCD的对角线AC,BD的长分别为6,4,则AB长为__.16.如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=3,则CD的长是___________.17.如图,在矩形ABCD中,AB=6,BC=8,O是矩形的对称中心,点E、F分别在边AD、BC上,连接OE、OF,若AE=BF=2,则OE+OF的值为__________.18.如图,菱形的对角线相交于点O,过点D作于点H,连接,若,,则的长为___________.19.如图,四边形纸片ABCD中,,,,,点E在BC上,且.将四边形纸片ABCD沿AE折叠,点C、D分别落在点、处,与AB交于点F,则BF长为______.20.我们把宽与长的比为黄金比()的矩形称为黄金矩形,如图,在黄金矩形ABCD中,,BC=4,的平分线交AD边于点E,则AE的长为______.21.图,正六边形的顶点B、C分别在正方形的边上,若,则的长度为_________.22.如图,已知小正方形ABCD的面积为1,把它的各边延长一倍得到新正方形;把正方形的各边长按原法延长一倍得到正方形;以此进行下去…则正方形的面积为 ________.23.如图,正方形ABCD的边长为6,点E,F分别为边BC,CD上两点,,AE平分∠BAC,连接BF,分别交AE,AC于点G,M,点P是线段AG上的一个动点,过点P作PN⊥AC,垂足为N,连接PM,则的最小值为______.24.如图,在平面直角坐标系中,有一个由四个边长为1的正方形组成的图案,其中点A坐标为,则点B坐标为______.三、解答题25.如图,在菱形中,于点E,于点F.(1)求证:;(2)分别延长和相交于点G,若,,求的值.26.如图,△ABC中,∠ABC=90°,O为AC的中点,连接BO并延长至D使OD=OB,连AD、CD.(1)求证:四边形ABCD为矩形;(2)若∠AOB=60°,E为BC的中点,连OE,OE=2.求对角线的长及矩形的面积.27.(1)方法感悟:如图1,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证:DE+BF=EF.感悟解题方法,并完成下列填空:将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,由旋转可得:AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,∴∠ABG+∠ABF=90°+90°=180°.因此,点G,B,H在同一条直线上.∵∠EAF=45°,∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°,∴∠1+∠3=45°.即∠GAF=∠______.又∵AG=AE,AF=AF,∴______.∴______=EF.故DE+BF=EF.(2)方法迁移:如图2,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.(3)问题拓展:如图3,在四边形ABCD中,AB=AD,E,F分别为DC,BC上的点,满足,试猜想当∠B,∠D满足什么关系时,可使得DE+BF=EF?请说明理由.参考答案1.D【分析】由,可知四边形ABCD是平行四边形,可判断①的正误;由AD=DC,可知平行四边形ABCD是菱形,根据菱形的性质可判断②③④⑤的正误.解:∵,∴四边形ABCD是平行四边形,故①正确;∵AD=DC,∴平行四边形ABCD是菱形,∴AB=BC,AC⊥BD,AC平分∠BAD,故②③④正确;∵AC=6,BD=8,∴菱形ABCD的面积=,故⑤正确;∴正确的个数有5个,故选D.【点拨】本题考查了平行四边形的判定,菱形的判定与性质.解题的关键在于证明四边形ABCD是菱形.2.C【分析】根据菱形的性质,平行线的性质,全等三角形的判定定理和性质确定,OA=OC,根据等腰三角形三线合一的性质确定∠BOC=90°,根据三角形内角和定理和平行线的性质即可求出∠DAC.解:∵四边形ABCD是菱形,∴,,.∴∠OMA=∠ONC,∠OAM=∠OCN,∠DAC=∠OCB.∵AM=CN,∴.∴OA=OC.∴BO⊥AC.∴∠BOC=90°.∵∠OBC=65°,∴∠OCB=180°-∠BOC-∠OBC=25°.∴∠DAC=∠OCB=25°.故选:C.【点拨】本题考查菱形的性质,平行线的性质,全等三角形的判定定理和性质确,等腰三角形三线合一的性质,三角形内角和定理,综合引用这些知识点是解题关键.3.D【分析】连接BD交AC于点O,由平行四边形和等边三角形的性质,易证四边形是菱形,可求得AB=2,AO=1,由勾股定理可求得,继而可求得对角线的长.解:如图,连接BD交AC于点O,由题意可得和是等边三角形,且边长都为2,∴AB=BC=CD=DA=AC=2,∴四边形是菱形,∴,BD=2BO,AC⊥BD,在中,由勾股定理得:,∴.故选:D.【点拨】本题主要考查了菱形的判定与性质、勾股定理,灵活运用菱形的性质和勾股定理求解是解题的关键.4.A【分析】先求出∠BAD=140°,∠ADB=∠ABD=20°,然后证明△ABE≌△CBE得到∠BEA=∠BEC=56°,则∠BAE=104°,∠DAE=36°,证明∠EFA=∠EAF=36°,则由三角形外角的性质可得∠DEF=∠EFA-∠EDF=16°.解:∵四边形ABCD是菱形,∠ABC=40°,∴AB=CB=AD,∠ABE=∠CBE=20°,,∴∠BAD=140°,∠ADB=∠ABD=20°,又∵BE=BE,∴△ABE≌△CBE(SAS),∴∠BEA=∠BEC=56°,∴∠BAE=104°,∴∠DAE=36°,∵AE=FE,∴∠EFA=∠EAF=36°,∴∠DEF=∠EFA-∠EDF=16°,故选A.【点拨】本题主要考查了菱形的性质,全等三角形的性质与判定,三角形内角和定理,等腰三角形的性质,三角形外角的性质,证明△ABE≌△CBE是解题的关键.5.B【分析】根据全等三角形的性质可得AE=CE,DE=EF,再根据对角线互相平分的四边形是平行四边形判断出四边形ADCF是平行四边形,然后利用等腰三角形三线合一的性质求出∠ADC=90°,再利用有一个角是直角的平行四边形是矩形解答.解:△ADE≌△CFE,∴AE=CE,DE=EF,∴四边形ADCF是平行四边形,∵AC=BC,点D是边AB的中点,∴∠ADC=90°,∴四边形ADCF是矩形.故选:B.【点拨】本题考查了矩形、菱形、正方形的判定,全等三角形的性质,等腰三角形的性质,熟练掌握矩形的判定定理是解题的关键.6.D【分析】根据三角形中位线定理求出AB的长度,再根据直角三角形斜边上的中线是斜边的一半求解即可.解:∵D、E分别是边BC、AC的中点,∴DE是△ABC的中位线.∴.∵DE=10,∴AB=2DE=20.∵CP是中斜边AB上的中线,,∴故选:D.【点拨】本题考查三角形中位线定理,直角三角形斜边上的中线是斜边的一半,熟练掌握这些知识点是解题关键.7.D【分析】连接CE,设EF交AC于点O,根据矩形的性质和EF是AC的垂直平分线,可得,EC=AE,OA=OC,再由勾股定理可得AE=CE=5,从而得到,再由△AOE≌△COF,可得OF=OE,即可求解.解:如图,连接CE,设EF交AC于点O,在矩形ABCD中,BC=AD=4,AB=CD=8,∠B=∠ADC=90°,AB∥CD,∴,∴,∵EF是AC的垂直平分线,∴EC=AE,OA=OC,设EC=AE =x,则BE=AB-AE=8-x,在Rt△EBC中,BE2+BC2=CE2,∴x2=42+(8-x)2,解得:x=5,∴AE=CE=5,∵EF⊥AC,∴,∵AB∥CD,∴∠OCF=∠OAE,∠AEO=∠CFO,∵OA=OC,∴△AOE≌△COF,∴OF=OE,∴,故选:D.【点拨】本题主要考查了矩形的性质、线段垂直平分线的性质、勾股定理、全等三角形的判定和性质,熟练掌握以上相关知识是解题的关键.8.D【分析】过点B作BG⊥x轴于G,过点C作CH⊥y轴于H,根据矩形的性质得到点C的坐标,求出∠COE=45°,OC=4,过点C作CE⊥x轴于E,过点C1作C1F⊥x轴于F,由旋转得∠COC1=75°,求出∠C1OF=30°,利用勾股定理求出OF,即可得到答案.解:过点B作BG⊥x轴于G,过点C作CH⊥y轴于H,∵四边形ABCD是矩形,∴AD=BC,AB=CD,ADBC,∠CDA=∠DAB=90°,∴∠HCD=∠ADO=∠BAG,∵∠CHD=∠BGA=90°,∴△CHD≌△AGB(AAS),∵,,,∴CH=AG=5-1=4,DH=BG=2,∴OH=2+2=4,∴C(4,4),∴OE=CE=4,∴∠COE=45°,OC=4,如图,过点C作CE⊥x轴于E,过点C1作C1F⊥x轴于F,由旋转得∠COC1=75°,∴∠C1OF=30°,∴C1F=OC1=OC=2,∴OF=,∴点C1的坐标为,故选:D.【点拨】此题考查了矩形的性质,旋转的性质,勾股定理,直角三角形30度角的性质,熟记各知识点并综合应用是解题的关键.9.A【分析】13和5为两条直角边长时,求出小正方形的边长8,即可利用勾股定理得出EF2的长.解:根据题题得:小正方形的边长等于BE-AE,∵,,∴小正方形的边长=13-5=8,∴.故选:A【点拨】本题考查了勾股定理、正方形的性质;熟练掌握勾股定理是解决问题的关键.10.B【分析】根据正方形的判定与性质、矩形的判定与性质、菱形的判定与性质和平行四边形的判定与性质来判断即可求解.解:如图,正方形ABCD中,作线段MN的垂直平分线交AD于点P,交AB于Q点,∵PQ垂直平分MN,∴PM=PN,QM=QN,在正方形ABCD中,∠PAN=∠QAN=45°,∴∠APQ=∠AQP=45°,∴AP=AQ,∴AC垂直平分PQ,∴MP=MQ,∴四边形PNQM是菱形,在MN运动的过程中,这样的菱形有无数个,即存在无数个这样的平行四边形,当点M与A或者C重合时,四边形PNQM是正方形,则至少存在一个四边形PNQM是正方形,即A、C、D项说法正确,∵MN=2,且当点M与A或者C重合时,四边形PNQM是正方形,也是矩形,∴不存在无数多个矩形,故B说法错误.故选:B.【点拨】本题考查了正方形的判定定理、矩形的判定定理、菱形和平行四边形的判定定理,熟练掌握相关定理是解答本题的关键.11.C【分析】根据题意直接证明,进而得,可知,结合等边三角形的条件,即可求得.解:四边形是正方形,,,是等边三角形,,,在和中,(HL), ,,,又,,,故选:C.【点拨】本题考查了HL证明直角三角形全等,等腰直角三角形的性质,等边三角形的性质,正方形的性质,熟练以上性质是解题的关键.12.C【分析】设AB中点为M,AC中点为N,连接DM,DN,AD.根据三角形中位线定理,平行线的性质,正方形的性质用AB表示出△ADF的面积,用AC表示出△ADH的面积,再结合勾股定理将△ADF与△ADH的面积相加即可求出阴影部分的面积.解:设AB中点为M,AC中点为N,连接DM,DN,AD.∵D是BC中点,M是AB中点,N是AC中点,∴DM是△ABC的中位线,DN是△ABC的中位线.∴,,,.∴∠BMD=∠BAC,∠DNC=∠BAC.∵∠BAC=90°,∴∠BMD=90°,∠DNC=90°,.∵四边形ABEF和四边形ACGH是正方形,∴AB=AF,AC=AH.∴,.∴S阴.∵BC=10,∴S阴.故选:C.【点拨】本题考查正方形的性质,三角形中位线定理,平行线的性质,勾股定理,综合应用这些知识点是解题关键.13.20【分析】根据矩形的性质得出∠ABC=90°,AD=BC=8cm,CD=AB=6cm,OA=OC=AC,OB=OD=BD,AC=BD,求出OC=OD,根据菱形的判定得出四边形OCED是菱形,根据菱形的性质得出OD=OC=DE=CE,根据勾股定理求出AC,再求出OC即可.解:∵四边形ABCD是矩形,AB=6cm,BC=8cm,∴∠ABC=90°,AD=BC=8cm,CD=AB=6cm,OA=OC= AC,OB=OD=BD,AC=BD,∴OC=OD,∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,又∵OC=OD,∴四边形OCED是菱形,∴OD=OC=DE=CE,由勾股定理得:AC==10(cm),∴AO=OC=5cm,∴OC=CE=DE=OD=5cm,即四边形ODEC的周长=5+5+5+5+5=20(cm),故答案为:20.【点拨】本题考查了矩形的性质,菱形的判定和性质,勾股定理等知识点,能熟记矩形的性质和菱形的判定定理是解此题的关键.14.(答案不唯一)【分析】根据菱形的判定定理“有一组邻边相等的平行四边形是菱形”,可以添加邻边相等的条件.解:条件:AB=AD,∵四边形ABCD是平行四边形,AB=AD,∴四边形ABCD是菱形.故答案为:AB=AD(答案不唯一).【点拨】本题考查了菱形的判定定理,熟练掌握菱形的判定方法是解题的关键.15.【分析】根据菱形的性质求得,的长,然后在中利用勾股定理即可求解.解:∵菱形ABCD的对角线AC,BD的长分别为6,4,∴,,,∴中,,故答案为:【点拨】本题考查了菱形的性质,勾股定理,熟练掌握菱形的性质是解题的关键.16.6【分析】根据三角形中位线定理,求得,进而根据菱形的性质求得.解:四边形是菱形,,E、F分别是AB、AC的中点,EF=3,,故答案为:.【点拨】本题考查了中位线定理,菱形的性质,掌握中位线定理是解题的关键.17.【分析】如图,连接,AC,BD.过点O作OM⊥AD于点M交BC于点N.利用勾股定理,求出OE,可得结论.解:如图,连接,AC,BD.∵O是矩形的对称中心,∴O也是对角线的交点,过点O作OM⊥AD于点M交BC于点N. ∵四边形ABCD是矩形,∴OA=OD=OB,∵OM⊥AD,∴AM=DM=AD=BC=4,∴OM=AB=3,∵AE=2,∴EM=AM-AE=2,∴OE==,同法可得OF=,∴OE+OF=2,故答案为:2.【点拨】本题考查中心对称,矩形的性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.18.3【分析】由菱形面积计算公式可求得BD的长,再由直角三角形斜边上中线的性质即可求得OH的长.解:∵四边形ABCD是菱形,∴AC=2OA=8,∵,∴,∴BD=6,∵DH⊥BC,O为BD的中点,∴OH为直角△DHB斜边上的中线,∴.故答案为:3.【点拨】本题考查了菱形的性质,直角三角形斜边上中线的性质,菱形面积等于两对角线乘积的一半等知识,掌握这些知识是解题的关键.19.5【分析】根据折叠的性质可得,则,勾股定理求得,证明,即可求得.解:∵,,,,∴四边形是矩形,,将四边形纸片ABCD沿AE折叠,点C、D分别落在点、处,,, ,中,,,又故答案为:5【点拨】本题考查了折叠的性质,矩形的判定,勾股定理,全等三角形的性质与判定,掌握折叠的性质与勾股定理是解题的关键.20.【分析】根据黄金矩形的定义求出AB,根据矩形的性质,角平分线的定义,平行线的性质求出∠ABE和∠AEB,再根据等角对等边即可求解.解:∵四边形ABCD是黄金矩形,BC=4,∴,∠ABC=90°,.∴.∵AE平分∠ABC,∴∠ABE=∠EBC=45°.∴∠AEB=∠EBC=45°.∴∠ABE=∠AEB.∴.故答案为:.【点拨】本题考查矩形的性质,平行线的性质,角平分线的定义,等角对等边,综合应用这些知识点是解题关键.21.3【分析】由正六边形的性质及正方形的性质可得∠BCG=30°,则由直角三角形的性质可求得BG的长,从而可得AG的长.解:∵六边形为正六边形,∴∠CBG=360°÷6=60°,BC=AB=2;∵四边形AGHI是正方形,∴∠G=90°,∴,∴,∴AG=AB+BG=2+1=3.故答案为:3.【点拨】本题考查了正多边形的性质,含30度直角三角形的性质,掌握这两方面知识是解题的关键.22.【分析】根据三角形的面积公式,可知每一次延长一倍后,得到的一个直角三角形的面积和延长前的正方形的面积相等,即每一次延长一倍后,得到的图形是延长前的正方形的面积的5倍,从而解答.解:最初边长为1,面积为1,延长一次为,面积5,再延长一次为=5,面积52=25,下一次延长为,面积53=125,以此类推,当N=2022时,正方形的面积为:52022.故答案为:.【点拨】本题主要考查了正方形的性质,在解题时要根据已知条件找出规律,从而得出正方形的面积,这是一道常考题.23.【分析】根据题意,进而证明,可得,勾股定理求解即可.解:如图,作,,连接MH. PN⊥AC,AE平分∠BAC,,,即为所求,四边形是正方形正方形,,又,,,,,,, AE平分∠BAC,,在与中,,,,是正方形的对角线,,,即的最小值为,故答案为:.【点拨】本题考查了角平分线的性质,正方形的性质,垂线段最短,根据题意求得的最小值是的长是解题的关键.24.【分析】根据正方形的性质可得:向右平移2个单位,再向下平移3个单位可得点B,再利用平移的性质可得答案.解:如图, 四个边长为1的正方形组成的图案,点A坐标为, 向右平移2个单位,再向下平移3个单位可得点B,所以 即 故答案为:【点拨】本题考查的是正方形的性质,坐标与图形,点的平移的坐标规律,熟练的运用点的平移坐标规律是解本题的关键.25.(1)见分析(2)【分析】(1)根据菱形的性质可知DC=BC,再根据,,可证得,则有,问题得解;(2)根据菱形的性质以及∠A=45°可证得△ABG是等腰直角三角形,即可求解.(1)解:∵四边形是菱形,∴,∵于点E,于点F,∴,∵,,,∴,∴,∴;即;(2)解:∵四边形是菱形,∴,AD=AB=1,∴,∵,∴,∴,∴△ABG是等腰直角三角形,∴,∴.【点拨】本题考查了菱形的性质和全等三角形的判定与性质,证明是解答本题的关键.26.(1)见分析(2)对角线的长为8,矩形的面积为【分析】(1)由O为AC的中点,可得OA=OC,然后根据对角线互相平分可证四边形ABCD为平行四边形,又∠ABC=90°,即可证明四边形ABCD为矩形;(2)易证OE为△ABC的中位线,可得AB=2OE=4,根据矩形的性质和∠AOB=60°,可证△AOB为等边三角形,可得OA=BO=AB,继而可得对角线AC=8,在Rt△ABC中,由勾股定理可得,继而可求得矩形的面积.解:(1)∵O为AC的中点,∴OA=OC,又∵OD=OB,∴四边形ABCD为平行四边形,又∵∠ABC=90°,∴四边形ABCD为矩形;(2)解:∵OA=OC,∴E为BC的中点,∴BE=CE,∴OE为△ABC的中位线,∴AB=2OE=2×2=4,∵ABCD为矩形,∴OA=AC,OB=BD,∵AC= BD,∴OA= OB,又∵∠AOB=60°,∴△AOB为等边三角形,∴OA=BO=AB=4,∴对角线AC=BD=2OA=8,∵∠ABC=90°,在Rt△ABC中,AB=4,AC=8,∴,∴ 矩形的面积.【点拨】本题主要考查了平行四边形的判定、矩形的判定、三角形中位线的判定与性质、等边三角形的判定与性质、勾股定理等,熟记相关定理是解题的关键.27.(1)EAF;△EAF;GF;(2)EF=DE+BF,见分析;(3)∠B+∠D=180°,见分析【分析】(1)根据图形和推理过程填空即可;(2)根据题意,分别证明,即可得出结论.(3)根据角之间关系,只要满足∠B+∠D=180°时,就可以得出三角形全等,利用全等三角形的性质即可得出答案.解:(1)将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,由旋转可得:AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,∴∠ABG+∠ABF=90°+90°=180°,因此,点G,B,F在同一条直线上,∵∠EAF=45°,∴∠2+∠3=∠BAD﹣∠EAF=90°﹣45°=45°,∴∠1+∠3=45°,即∠GAF=∠EAF,又AG=AE,AF=AF,∴△GAF≌△EAF(SAS),∴GF=EF,故DE+BF=EF;故答案为:EAF,△EAF,GF.(2)EF=DE+BF,理由如下:如图,延长CF,作∠4=∠1.∵将Rt△ABC沿斜边翻折得到Rt△ADC,点E,F分别为DC,BC边上的点,且,∴∠1+∠2=∠3+∠5,∠2+∠3=∠1+∠5.∵∠4=∠1,∠2+∠3=∠4+∠5,∴∠GAF=∠FAE.∵在△AGB和△AED中,∴.∴AG=AE,BG=DE.∵在△AGF和△AEF中,∴.∴GF=EF.∴DE+BF=EF.(3)当∠B与∠D满足∠B+∠D=180°时,可使得DE+BF=EF.如图,延长CF,作∠2=∠1.∵∠ABC+∠D=180°,∠ABC+∠ABG=180°,∴∠D=∠ABG.在△AGB和△AED中,∴. ∴BG=DE,AG=AE.∵,∴∠EAF=∠GAF.在△AGF和△AEF中,∴. ∴GF=EF,DE+BF=EF.故当∠B与∠D满足∠B+∠D=180°时,可使得DE+BF=EF.【点拨】本题主要考查了正方形的性质,全等三角形的判定和性质以及旋转变换性质等知识,根据题意作出与已知相等的角,利用三角形全等是解决问题的关键.

    文档详情页底部广告位
    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map