所属成套资源:中考数学一轮复习重点考向练习突破(2份,原卷版+解析版)
中考数学一轮复习重点考向练习专题18 特殊四边形及圆的相关证明与计算(2份,原卷版+解析版)
展开
这是一份中考数学一轮复习重点考向练习专题18 特殊四边形及圆的相关证明与计算(2份,原卷版+解析版),文件包含中考数学一轮复习重点考向练习专题18特殊四边形及圆的相关证明与计算原卷版doc、中考数学一轮复习重点考向练习专题18特殊四边形及圆的相关证明与计算解析版doc等2份试卷配套教学资源,其中试卷共70页, 欢迎下载使用。
目录一览
1.理解矩形、菱形、正方形的概念,以及它们之间的关系;探索并证明矩形、菱形、正方形的性质定理和判定定理.
2. 探索圆周角与圆心角及其所对弧的关系,了解并证明圆周角定理及其推论;理解圆、弧、弦、圆心角、圆周角的概念,了解等圆、等弧的概念; 知道三角形的外心;
3. 圆内接四边形的对角互补.了解直线和圆的位置关系,掌握切线的概念,探索切线与过切点的半径关系,会用三角尺过圆上一点画圆的切线; 知道三角形的内心.
4. 会计算圆的弧长、扇形的面积;了解正多边形的概念及正多边形与圆的关系.
特殊四边形考点内容是考查重点,年年都会考查,分值为15分左右,预计2024年各地中考还将出现,并且在选择、填空题中考查利用特殊四边形性质和判定求角度、长度问题的可能性比较大。解答题中考查特殊四边形的性质和判定,一般和三角形全等、解直角三角形、二次函数、动态问题综合应用的可能性比较大。对于本考点内容,要注重基础,反复练习,灵活运用。
圆的性质及其证明与计算板块内容以考查综合题为主,也是考查重点,除了填空题和选择题外,年年都会考查综合题,对多数考生来说也是难点,分值为5分左右。预计2024年各地中考肯定还是考查的重点在选择、填空题中考查,考查形式多样,多以动点、动图的形式给出,难度较大。关键是掌握基础知识、基本方法,力争拿到全分。
与切线有关的证明与计算板块内容以考查综合题为主,也是考查重点,除了填空题和选择题外,年年都会考查综合题,对多数考生来说也是难点,分值为8分左右。预计2024年各地中考肯定还是考查的重点在选择、填空题中考查,在解答题中想必还会考查切线的性质和判定,和直角三角形结合的求线段长的问题和三角函数结合的求角度的问题等知识点综合,考查形式多样,多以动点、动图的形式给出,难度较大。关键是掌握基础知识、基本方法,力争拿到全分。
弧长、扇形面积相关计算板块内容以考查综合题为主,也是考查重点,除了填空题和选择题外,年年都会考查综合题,对多数考生来说也是难点,分值为5分左右。预计2024年各地中考肯定还是考查的重点在选择、填空题中考查弧长、扇形面积,考查形式多样,难度较大。关键是掌握基础知识、基本方法,力争拿到全分。
►考向一 直角三角形斜边上的中线
1.(2023•株洲)一技术人员用刻度尺(单位:cm)测量某三角形部件的尺寸.如图所示,已知∠ACB=90°,点D为边AB的中点,点A、B对应的刻度为1、7,则CD=( )
A.3.5cmB.3cmC.4.5cmD.6cm
2.(2023•荆州)如图,CD为Rt△ABC斜边AB上的中线,E为AC的中点.若AC=8,CD=5,则DE= .
►考向二 平行四边形的判定与性质
3.(2023•贵州)如图,在Rt△ABC中,∠C=90°,延长CB至D,使得BD=CB,过点A,D分别作AE∥BD,DE∥BA,AE与DE相交于点E.下面是两位同学的对话:
小星:由题目的已知条件,若连接BE,则可
证明BE⊥CD.
小红:由题目的已知条件,若连接CE,则可证明CE=DE.
(1)请你选择一位同学的说法,并进行证明;
(2)连接AD,若,求AC的长.
4.(2023•扬州)如图,点E、F、G、H分别是平行四边形ABCD各边的中点,连接AF、CE相交于点M,连接AG、CH相交于点N.
(1)求证:四边形AMCN是平行四边形;
(2)若▱AMCN的面积为4,求▱ABCD的面积.
►考向三 矩形的判定与性质
5.(2023•雅安)如图,在△ABC中,∠C=90°,AC=BC=6,P为边AB上一动点,作PD⊥BC于点D,PE⊥AC于点E,则DE的最小值为 .
6.(2023•大庆)如图,在平行四边形ABCD中,E为线段CD的中点,连接AC,AE,延长AE,BC交于点F,连接DF,∠ACF=90°.
(1)求证:四边形ACFD是矩形;
(2)若CD=13,CF=5,求四边形ABCE的面积.
►考向四 菱形的判定与性质
7.(2023•德阳)如图,▱ABCD的面积为12,AC=BD=6,AC与BD交于点O,分别过点C,D作BD,AC的平行线相交于点F,点G是CD的中点,点P是四边形OCFD边上的动点,则PG的最小值是( )
A.1B.C.D.3
8.(2022•辽宁)如图,CD是△ABC的角平分线,过点D分别作AC,BC的平行线,交BC于点E,交AC于点F.若∠ACB=60°,CD=4,则四边形CEDF的周长是 .
►考向五 正方形的判定与性质
9.(2020•台州)下列是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形.下列推理过程正确的是( )
A.由②推出③,由③推出①B.由①推出②,由②推出③
C.由③推出①,由①推出②D.由①推出③,由③推出②
10.(2017•玉林)如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=4,D是AB的中点,E,F分别是AC,BC上的点(点E不与端点A,C重合),且AE=CF,连接EF并取EF的中点O,连接DO并延长至点G,使GO=OD,连接DE,DF,GE,GF.
(1)求证:四边形EDFG是正方形;
(2)当点E在什么位置时,四边形EDFG的面积最小?并求四边形EDFG面积的最小值.
►考向六 垂径定理的应用
11.(2023•广西)赵州桥是当今世界上建造最早,保存最完整的中国古代单孔敞肩石拱桥.如图,主桥拱呈圆弧形,跨度约为37m,拱高约为7m,则赵州桥主桥拱半径R约为( )
A.20mB.28mC.35mD.40m
12.(2023•东营)“圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问:径几何?”转化为现在的数学语言表达就是:如图,CD为⊙O的直径,弦AB⊥CD,垂足为E,CE=1寸,AB=10寸,则直径CD的长度为 寸.
►考向七 圆周角定理
13.(2023•云南)如图,AB是⊙O的直径,C是⊙O上一点.若∠BOC=66°,则∠A=( )
A.66°B.33°C.24°D.30°
14.(2023•深圳)如图,在⊙O中,AB为直径,C为圆上一点,∠BAC的角平分线与⊙O交于点D,若∠ADC=20°,则∠BAD= °.
►考向八 圆内接四边形的性质
15.(2023•西藏)如图,四边形ABCD内接于⊙O,E为BC延长线上一点.若∠DCE=65°,则∠BOD的度数是( )
A.65°B.115°C.130°D.140°
16.(2023•淮安)如图,四边形ABCD是⊙O的内接四边形,BC是⊙O的直径,BC=2CD,则
∠BAD的度数是 °.
►考向九 三角形的外接圆与外心
17.(2023•自贡)如图,△ABC内接于⊙O,CD是⊙O的直径,连接BD,∠DCA=41°,则∠ABC的度数是( )
A.41°B.45°C.49°D.59°
18.(2023•湖北)如图,在3×3的正方形网格中,小正方形的顶点称为格点,顶点均在格点上的图形称为格点图形,图中的圆弧为格点△ABC外接圆的一部分,小正方形边长为1,图中阴影部分的面积为( )
A.π﹣B.π﹣C.π﹣D.π﹣
►考向十 直线与圆的位置关系
19.(2023•宿迁)在同一平面内,已知⊙O的半径为2,圆心O到直线l的距离为3,点P为圆上的一个动点,则点P到直线l的最大距离是( )
A.2B.5C.6D.8
20.(2023•镇江)已知一次函数y=kx+2的图象经过第一、二、四象限,以坐标原点O为圆心,r为半径作⊙O.若对于符合条件的任意实数k,一次函数y=kx+2的图象与⊙O总有两个公共点,则r的最小值为 .
►考向十一 切线的判定与性质
21.(2023•郴州)如图,在⊙O中,AB是直径,点C是圆上一点.在AB的延长线上取一点D,连接CD,使∠BCD=∠A.
(1)求证:直线CD是⊙O的切线;
(2)若∠ACD=120°,CD=2,求图中阴影部分的面积(结果用含π的式子表示).
22.(2023•巴中)如图,已知等腰△ABC,AB=AC,以AB为直径作⊙O交BC于点D,过D作DF⊥AC于点E,交BA延长线于点F.
(1)求证:DF是⊙O的切线.
(2)若CE=,CD=2,求图中阴影部分的面积(结果用π表示).
►考向十二 三角形的内切圆与内心
23.(2023•广州)如图,△ABC的内切圆⊙I与BC,CA,AB分别相切于点D,E,F,若⊙I的半径为r,∠A=α,则(BF+CE﹣BC)的值和∠FDE的大小分别为( )
A.2r,90°﹣αB.0,90°﹣αC.2r,D.0,
24.(2023•攀枝花)已知△ABC的周长为l,其内切圆的面积为πr2,则△ABC的面积为( )
A.rlB.πrlC.rlD.πrl
►考向十三 正多边形和圆
25.(2023•福建)我国魏晋时期数学家刘徽在《九章算术注》中提到了著名的“割圆术”,即利用圆的内接正多边形逼近圆的方法来近似估算,指出“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.“割圆术”孕育了微积分思想,他用这种思想得到了圆周率π的近似值为3.1416.如图,⊙O的半径为1,运用“割圆术”,以圆内接正六边形面积近似估计⊙O的面积,可得π的估计值为,若用圆内接正十二边形作近似估计,可得π的估计值为( )
A.B.2C.3D.2
26.(2023•衡阳)如图,用若干个全等的正五边形排成圆环状,图中所示的是其中3个正五边形的位置.要完成这一圆环排列,共需要正五边形的个数是 .
►考向十四 弧长的计算
27.(2023•青岛)如图,四边形ABCD是⊙O的内接四边形,∠B=58°,∠ACD=40°.若⊙O的半径为5,则的长为( )
A.B.C.πD.
28.(2023•阜新)如图,四边形OABC1是正方形,曲线C1C2C3C4C5…叫作“正方形的渐开线”,其中,,,,…的圆心依次按O,A,B,C1循环,当OA=1时,点C2023的坐标是( )
A.(﹣1,﹣2022)B.(﹣2023,1)
C.(﹣1,﹣2023)D.(2022,0)
►考向十五 扇形面积的计算
29.(2023•连云港)如图,矩形ABCD内接于⊙O,分别以AB、BC、CD、AD为直径向外作半圆.若AB=4,BC=5,则阴影部分的面积是( )
A.π﹣20B.π﹣20C.20πD.20
30.(2023•娄底)如图,正六边形ABCDEF的外接圆⊙O的半径为2,过圆心O的两条直线l1、l2的夹角为60°,则图中的阴影部分的面积为( )
A.π﹣B.π﹣C.π﹣D.π﹣
►考向十六 圆锥的计算
31.(2023•赤峰)某班学生表演课本剧,要制作一顶圆锥形的小丑帽.如图,这个圆锥的底面圆周长为20πcm,母线AB长为30cm.为了使帽子更美观,要粘贴彩带进行装饰,其中需要粘贴一条从点A处开始,绕侧面一周又回到点A的彩带(彩带宽度忽略不计),这条彩带的最短长度是( )
A.30cmB.30cmC.60cmD.20πcm
32.(2023•苏州)如图,在▱ABCD中,AB=+1,BC=2,AH⊥CD,垂足为H,AH=.以点A为圆心,AH长为半径画弧,与AB,AC,AD分别交于点E,F,G.若用扇形AEF围成一个圆锥的侧面,记这个圆锥底面圆的半径为r1;用扇形AHG围成另一个圆锥的侧面,记这个圆锥底面圆的半径为r2,则r1﹣r2= .(结果保留根号)
►考向十七 圆的综合题
33.(2023•杭州)如图,在⊙O中,直径AB垂直弦CD于点E,连接AC,AD,BC,作CF⊥AD于点F,交线段OB于点G(不与点O,B重合),连接OF.
(1)若BE=1,求GE的长.
(2)求证:BC2=BG•BO.
(3)若FO=FG,猜想∠CAD的度数,并证明你的结论.
34.(2023•枣庄)如图,AB为⊙O的直径,点C是的中点,过点C作射线BD的垂线,垂足为E.
(1)求证:CE是⊙O的切线;
(2)若BE=3,AB=4,求BC的长;
(3)在(2)的条件下,求阴影部分的面积(用含有π的式子表示).
1.(2023•赤峰)如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=6.点F是AB中点,连接CF,把线段CF沿射线BC方向平移到DE,点D在AC上.则线段CF在平移过程中扫过区域形成的四边形CFDE的周长和面积分别是( )
A.16,6B.18,18C.16,12D.12,16
2.(2022•杭州)如图,在Rt△ACB中,∠ACB=90°,点M为边AB的中点,点E在线段AM上,EF⊥AC于点F,连接CM,CE.已知∠A=50°,∠ACE=30°.
(1)求证:CE=CM.
(2)若AB=4,求线段FC的长.
3.(2022•德阳)如图,在菱形ABCD中,∠ABC=60°,AB=2cm,过点D作BC的垂线,交BC的延长线于点H.点F从点B出发沿BD方向以2cm/s向点D匀速运动,同时,点E从点H出发沿HD方向以1cm/s向点D匀速运动.设点E,F的运动时间为t(单位:s),且0<t<3,过F作FG⊥BC于点G,连结EF.
(1)求证:四边形EFGH是矩形;
(2)连结FC,EC,点F,E在运动过程中,△BFC与△DCE是否能够全等?若能,求出此时t的值;若不能,请说明理由.
4.(2022•凉山州)在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交CE的延长线于点F.
(1)求证:四边形ADBF是菱形;
(2)若AB=8,菱形ADBF的面积为40.求AC的长.
5.(2022•威海)如图1,在正方形ABCD中,E,F,G,H分别为边AB,BC,CD,DA上的点,HA=EB=FC=GD,连接EG,FH,交点为O.
(1)如图2,连接EF,FG,GH,HE,试判断四边形EFGH的形状,并证明你的结论;
(2)将正方形ABCD沿线段EG,HF剪开,再把得到的四个四边形按图3的方式拼接成一个四边形.若正方形ABCD的边长为3cm,HA=EB=FC=GD=1cm,则图3中阴影部分的面积为 cm2.
6.(2023•苏州)如图,AB是半圆O的直径,点C,D在半圆上,,连接OC,CA,OD,过点B作EB⊥AB,交OD的延长线于点E.设△OAC的面积为S1,△OBE的面积为S2,若,则tan∠ACO的值为( )
B.C.D.
8.(2023•辽宁)如图,△ABC内接于⊙O,AB是⊙O的直径,CE平分∠ACB交⊙O于点E,过点E作EF∥AB,交CA的延长线于点F.
(1)求证:EF与⊙O相切;
(2)若∠CAB=30°,AB=8,过点E作EG⊥AC于点M,交⊙O于点G,交AB于点N,求的长.
9.(2023•镇江)《九章算术》中记载:“今有勾八步,股一十五步.问勾中容圆径几何?”译文:今有一个直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形内切圆的直径是多少?书中给出的算法译文如下:如图,根据勾、股,求得弦长.用勾、股、弦相加作为除数,用勾乘以股,再乘以2作为被除数,商即为该直角三角形内切圆的直径,求得该直径等于 步(注:“步”为长度单位).
10.(2023•菏泽)如图,正八边形ABCDEFGH的边长为4,以顶点A为圆心,AB的长为半径画圆,则阴影部分的面积为 (结果保留π).
11.(2023•张家界)如图,在平面直角坐标系中,四边形ABOC是正方形,点A的坐标为(1,1),是以点B为圆心,BA为半径的圆弧;是以点O为圆心,OA1为半径的圆弧;是以点C为圆心,CA2为半径的圆弧;是以点A为圆心,AA3为半径的圆弧,继续以点B、O、C、A为圆心,按上述作法得到的曲线AA1A2A3A4A5…称为正方形的“渐开线”,则点A2023的坐标是 .
12.(2023•温州)图1是4×4方格绘成的七巧板图案,每个小方格的边长为,现将它剪拼成一个“房子”造型(如图2),过左侧的三个端点作圆,并在圆内右侧部分留出矩形CDEF作为题字区域(点A,E,D,B在圆上,点C,F在AB上),形成一幅装饰画,则圆的半径为 5 .若点A,N,M在同一直线上,AB∥PN,DE=EF,则题字区域的面积为 .
13.(2023•呼和浩特)圆锥的高为,母线长为3,沿一条母线将其侧面展开,展开图(扇形)的圆心角是 度,该圆锥的侧面积是 (结果用含π的式子表示).
知识目标(新课程标准提炼)
中考命题趋势(分析考察方向,精准把握重难点)
重点考向(以真题为例,探究中考命题方向)
►考向一 直角三角形斜边上的中线
►考向二 平行四边形的判定与性质
►考向三 矩形的判定与性质
►考向四 菱形的判定与性质
►考向五 正方形的判定与性质
►考向六 垂径定理的应用
►考向七 圆周角定理
►考向八 圆内接四边形的性质
►考向九 三角形的外接圆与外心
►考向十 直线与圆的位置关系
►考向十一 切线的判定与性质
►考向十二 三角形的内切圆与内心
►考向十三 正多边形和圆
►考向十四 弧长的计算
►考向十五 扇形面积的计算
►考向十六 圆锥的计算
►考向十七 圆的综合题
最新真题荟萃(精选最新典型真题,强化知识运用,优化解题技巧)
相关试卷
这是一份2025年中考数学二轮复习讲与练专题06 圆中的相关证明及计算(2份,原卷版+解析版),文件包含2025年中考数学二轮复习讲与练专题06圆中的相关证明及计算原卷版docx、2025年中考数学二轮复习讲与练专题06圆中的相关证明及计算解析版docx等2份试卷配套教学资源,其中试卷共169页, 欢迎下载使用。
这是一份2025年中考数学二轮培优练习专题06 圆中的相关证明及计算(2份,原卷版+解析版),文件包含2025年中考数学二轮培优练习专题06圆中的相关证明及计算原卷版docx、2025年中考数学二轮培优练习专题06圆中的相关证明及计算解析版docx等2份试卷配套教学资源,其中试卷共194页, 欢迎下载使用。
这是一份2024年中考数学【高分·突破】考点13圆的相关证明与计算(原卷版+解析),共37页。