2024年山东济南中考真题数学真题及答案
展开
这是一份2024年山东济南中考真题数学真题及答案,共11页。
1.答卷前,考生务必将自己的姓名、准考证号、座号等填写在答题卡和试卷指定位置上.
2.回答选择题时,选出每小题答案,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,用0.5mm黑色签字笔将答案写在答题卡上.写在本试卷上无效.
3.考试结束后,将本试卷和答题卡一并交回.
一、选择题:本题共10小题,每小题4分,共40分.每小题只有一个选项符合题目要求.
1. 9的相反数是( )
A. B. C. 9D.
2. 黑陶是继彩陶之后中国新石器时代制陶工艺的又一个高峰,被誉为“土与火的艺术,力与美的结晶”.如图是山东博物馆收藏的蛋壳黑陶高柄杯.关于它的三视图,下列说法正确的是( )
A. 主视图与左视图相同B. 主视图与俯视图相同
C. 左视图与俯视图相同D. 三种视图都相同
3. 截止2023年底,我国森林面积约为3465000000亩,森林覆盖率达到,将数字3465000000用科学记数法表示为( )
A B. C. D.
4. 一个正多边形,它的每一个外角都等于45°,则该正多边形是( )
A 正六边形B. 正七边形C. 正八边形D. 正九边形
5. 如图,已知,则度数为( ).
A. B. C. D.
6. 下列运算正确的是( )
A. B. C. D.
7. 若关于的方程有两个不相等的实数根,则实数的取值范围是( )
A. B. C. D.
8. 3月14日是国际数学节、某学校在今年国际数学节策划了“竞速华容道”“玩转幻方”和“巧解鲁班锁”三个挑战活动,如果小红和小丽每人随机选择参力口其中一个活动,则她们恰好选到同一个活动的概率是( )
A. B. C. D.
9. 如图,在正方形中,分别以点A和为圆心,以大于的长为半径作弧,两弧相交于点和,作直线,再以点A为圆心,以的长为半径作弧交直线于点(点在正方形内部),连接并延长交于点.若,则正方形的边长为( )
A. B. C. D.
10. 如图1,是等边三角形,点在边上,,动点以每秒1个单位长度的速度从点出发,沿折线匀速运动,到达点后停止,连接.设点的运动时间为,为.当动点沿匀速运动到点时,与的函数图象如图2所示.有以下四个结论:
①;
②当时,;
③当时,;
④动点沿匀速运动时,两个时刻,分别对应和,若,则.其中正确结论序号是( )
A.①②③ B.①② C.③④ D.①②④
二、填空题:本题共5小题,每小题4分,共20分.直接填写答案.
11. 若分式的值为0,则的值是________.
12. 如图是一个可以自由转动的转盘,转盘被等分成四个扇形,转动转盘,当转盘停止时,指针落在红色区域的概率为______.
13. 如图,已知,是等腰直角三角形,,顶点分别在上,当时,______.
14. 某公司生产了两款新能源电动汽车.如图,分别表示款,款新能源电动汽车充满电后电池的剩余电量与汽车行驶路程的关系.当两款新能源电动汽车的行驶路程都是时,款新能源电动汽车电池的剩余电量比款新能源电动汽车电池的剩余电量多______.
15. 如图,在矩形纸片中,,为边的中点,点在边上,连接,将沿翻折,点的对应点为,连接.若,则______.
三、解答题:本题共10小题,共90分.解答应写出文字说明、证明过程或演算步骤.
16. 计算:.
17. 解不等式组:,并写出它的所有整数解.
18. 如图,在菱形中,,垂足为,垂足为.
求证:.
19. 城市轨道交通发展迅猛,为市民出行带来极大方便,某校“综合实践”小组想测得轻轨高架站的相关距离,数据勘测组通过勘测得到了如下记录表:
请根据记录表提供的信息完成下列问题:
(1)求点到地面的距离;
(2)求顶部线段的长.(结果精确到,参考数据:,,,)
20. 如图,为的直径,点在上,连接,点在的延长线上,.
(1)求证:与相切;
(2)若,求的长.
21. 2024年3月25日是第29个全国中小学生安全教育日,为提高学生安全防范意识和自我防护能力,某校开展了校园安全知识竞赛(百分制),八年级学生参加了本次活动.为了解该年级的答题情况,该校随机抽取了八年级部分学生的竞赛成绩(成绩用x表示,单位:分)
并对数据(成绩)进行统计整理.数据分为五组:
A:;B:;C:;D:;E:.
下面给出了部分信息:
a:C组的数据:
70,71,71,72,72,72,74,74,75,76,76,76,78,78,79,79.
b:不完整的学生竞赛成绩频数直方图和扇形统计图如下:
请根据以上信息完成下列问题:
(1)求随机抽取的八年级学生人数;
(2)扇形统计图中B组对应扇形的圆心角为______度;
(3)请补全频数直方图;
(4)抽取的八年级学生竞赛成绩的中位数是______分;
(5)该校八年级共900人参加了此次竞赛活动,请你估计该校八年级参加此次竞赛活动成绩达到80分及以上的学生人数.
22. 近年来光伏建筑一体化广受关注.某社区拟修建A,B两种光伏车棚.已知修建2个A种光伏车棚和1个B种光伏车棚共需投资8万元,修建5个A种光伏车棚和3个B种光伏车棚共需投资21万元.
(1)求修建每个A种,B种光伏车棚分别需投资多少万元?
(2)若修建A,B两种光伏车棚共20个,要求修建的A种光伏车棚的数量不少于修建的B种光伏车棚数量的2倍,问修建多少个A种光伏车棚时,可使投资总额最少?最少投资总额为多少万元?
23. 已知反比例函数的图象与正比例函数的图象交于点,点是线段上(不与点A重合)的一点.
(1)求反比例函数的表达式;
(2)如图1,过点作轴的垂线与的图象交于点,当线段时,求点的坐标;
(3)如图2,将点A绕点顺时针旋转得到点,当点恰好落在的图象上时,求点的坐标.
24. 在平面直角坐标系中,抛物线经过点,顶点为;抛物线,顶点为.
(1)求抛物线表达式及顶点的坐标;
(2)如图1,连接,点是拋物线对称轴右侧图象上一点,点是拋物线上一点,若四边形是面积为12的平行四边形,求的值;
(3)如图2,连接,点是抛物线对称轴左侧图像上的动点(不与点重合),过点作交轴于点,连接,求面积的最小值.
25. 某校数学兴趣小组的同学在学习了图形的相似后,对三角形的相似进行了深入研究.
(一)拓展探究
如图1,在中,,垂足为.
(1)兴趣小组的同学得出.理由如下:
请完成填空:①______;②______;
(2)如图2,为线段上一点,连接并延长至点,连接,当时,请判断的形状,并说明理由.
(二)学以致用
(3)如图3,是直角三角形,,平面内一点,满足,连接并延长至点,且,当线段的长度取得最小值时,求线段的长.
参考答案
本试卷共8页,满分150分.考试时间为120分钟
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、座号等填写在答题卡和试卷指定位置上.
2.回答选择题时,选出每小题答案,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,用0.5mm黑色签字笔将答案写在答题卡上.写在本试卷上无效.
3.考试结束后,将本试卷和答题卡一并交回.
一、选择题:本题共10小题,每小题4分,共40分.每小题只有一个选项符合题目要求.
【1题答案】
【答案】D
【2题答案】
【答案】A
【3题答案】
【答案】B
【4题答案】
【答案】C
【5题答案】
【答案】C
【6题答案】
【答案】D
【7题答案】
【答案】B
【8题答案】
【答案】C
【9题答案】
【答案】D
【10题答案】
【答案】D
二、填空题:本题共5小题,每小题4分,共20分.直接填写答案.
【11题答案】
【答案】1
【12题答案】
【答案】
【13题答案】
【答案】##65度
【14题答案】
【答案】12
【15题答案】
【答案】##
三、解答题:本题共10小题,共90分.解答应写出文字说明、证明过程或演算步骤.
【16题答案】
【答案】6
【17题答案】
【答案】,整数解为:0,1,2,3.
【18题答案】
【答案】证明见解析.
【19题答案】
【答案】(1)点到地面的距离为;
(2)顶部线段的长为.
【20题答案】
【答案】(1)证明见解析;
(2).
【21题答案】
【答案】(1)60人 (2)90
(3)图见解析 (4)77
(5)390人
【22题答案】
【答案】(1)修建一个种光伏车棚需投资3万元,修建一个种光伏车棚需投资2万元
(2)修建种光伏车棚14个时,投资总额最少,最少投资总额为54万元
【23题答案】
【答案】(1);
(2);
(3)点.
【24题答案】
【答案】(1),
(2)
(3)
【25题答案】
【答案】(1)①;②;(2)是直角三角形,证明见解析;(3)
综合实践活动记录表
活动内容
测量轻轨高架站的相关距离
测量工具
测倾器,红外测距仪等
过程资料
相关数据及说明:图中点,在同平面内,房顶,吊顶和地面所在的直线都平行,点在与地面垂直的中轴线上,,.
成果梳理
……
①______
②______
相关试卷
这是一份[数学]2023年山东省济南市中考真题数学真题(原题版+解析版),文件包含数学2023年山东省济南市中考真题数学真题解析版docx、数学2023年山东省济南市中考真题数学真题原题版docx等2份试卷配套教学资源,其中试卷共42页, 欢迎下载使用。
这是一份[数学]2024年山东省济南市中考真题数学真题(有答案),共18页。
这是一份2019山东省济南市中考数学真题及答案,共31页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。