![模块一 中考新动向专题3 构建模型-2024年中考数学二轮专题复习训练(含解析)第1页](http://img-preview.51jiaoxi.com/2/3/16416039/0-1732162308554/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![模块一 中考新动向专题3 构建模型-2024年中考数学二轮专题复习训练(含解析)第2页](http://img-preview.51jiaoxi.com/2/3/16416039/0-1732162308638/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![模块一 中考新动向专题3 构建模型-2024年中考数学二轮专题复习训练(含解析)第3页](http://img-preview.51jiaoxi.com/2/3/16416039/0-1732162308676/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:【备战2025】最新中考数学二轮复习 模块专题训练(含解析)
模块一 中考新动向专题3 构建模型-2024年中考数学二轮专题复习训练(含解析)
展开
这是一份模块一 中考新动向专题3 构建模型-2024年中考数学二轮专题复习训练(含解析),共40页。试卷主要包含了中考新动向等内容,欢迎下载使用。
专题3 “构建模型”类型
数学试题与不同背景结合形成不同的实际问题,集中体现在涉及当前社会热点、生产生活、音乐建筑、天文地理、历史文化、生态环境、物化生实验、交通运输、医疗卫生等背景,显示了数学广泛的应用性.
近年中考试题以能力立意为目标,以增大思维容量为特色,在考查基础知识的同时,注重对考生创新意识的考查.
1展现中国古代数学文化.在历年的中考试题中,经常会出现一些有关中国古代数学文化的试题,以此对学生进行中华优秀传统文化的教育,中考命题也是如此.
2.体现数学的应用价值.在中考数学应用试题中,也有体现数学在社会实践及科学研究中广泛应用的试题.
3.感受数学之美.数学既是运算与推理的工具,也是一种表达和交流的语言,是人类文明的一个重要组成部分.因此,中考试题将会出现更多的引导对学生感受数学之美的试题.
考点讲解:与社会热点相结合的数学建模题要求学生具备敏锐的观察力、分析问题的能力,启迪学生理解数学语言,用数学眼光认识世界,用数学的思维思考世界,体现了逻辑推理、数据分析等核心素养.
【例1】
(2023·四川攀枝花·统考中考真题)
1.2022年卡塔尔世界杯共有32支球队进行决赛阶段的比赛.决赛阶段分为分组积分赛和复赛.32支球队通过抽签被分成8个小组,每个小组4支球队,进行分组积分赛,分组积分赛采取单循环比赛(同组内每2支球队之间都只进行一场比赛),各个小组的前两名共16支球队将获得出线资格,进入复赛;进入复赛后均进行单场淘汰赛,16支球队按照既定的规则确定赛程,不再抽签,然后进行决赛,决赛,最后胜出的4支球队进行半决赛,半决赛胜出的2支球队决出冠、亚军,另外2支球队决出三、四名.
(1)本届世界杯分在组的4支球队有阿根廷、沙特、墨西哥、波兰,请用表格列一个组分组积分赛对阵表(不要求写对阵时间).
(2)请简要说明本届世界杯冠军阿根廷队在决赛阶段一共踢了多少场比赛?
(3)请简要说明本届世界杯32支球队在决赛阶段一共踢了多少场比赛?
【变1】
(2023·宁夏·统考中考真题)
2.“人间烟火味,最抚凡人心”,地摊经济、小店经济是就业岗位的重要来源.某经营者购进了型和型两种玩具,已知用520元购进型玩具的数量比用175元购进型玩具的数量多30个,且型玩具单价是型玩具单价的倍.
(1)求两种型号玩具的单价各是多少元?
根据题意,甲、乙两名同学分别列出如下方程:
甲:,解得,经检验是原方程的解.
乙:,解得,经检验是原方程的解.
则甲所列方程中的表示_______,乙所列方程中的表示_______;
(2)该经营者准备用1350元以原单价再次购进这两种型号的玩具共200个,则最多可购进型玩具多少个?
考点讲解:破解以生产、生活实际为背景相交汇试题的关键:一是认真读题,读懂题意;二是会观察;三是会利用知识解决问题.
【例1】
(2023·吉林长春·统考中考真题)
3.近年来,肥胖经成为影响人们身体健康的重要因素.目前,国际上常用身体质量指数( ,缩写)来衡量人体胖瘦程度以及是否健康,其计算公式是
例如:某人身高,体重,则他的.
中国成人的数值标准为:为偏瘦;为正常;为偏胖;为肥胖.
某公司为了解员工的健康情况,随机抽取了一部分员工的体检数据,通过计算得到他们的值并绘制了如下两幅不完整的统计图.
根据以上信息回答下列问题:
(1)补全条形统计图;
(2)请估计该公司名员工中属于偏胖和肥胖的总人数;
(3)基于上述统计结果,公司建议每个人制定健身计划.员工小张身高,值为,他想通过健身减重使自己的值达到正常,则他的体重至少需要减掉_________.(结果精确到)
【变1】
(2023·山东日照·统考中考真题)
4.要制作200个A,B两种规格的顶部无盖木盒,A种规格是长、宽、高都为的正方体无盖木盒,B种规格是长、宽、高各为,,的长方体无盖木盒,如图1.现有200张规格为的木板材,对该种木板材有甲、乙两种切割方式,如图2.切割、拼接等板材损耗忽略不计.
(1)设制作A种木盒x个,则制作B种木盒__________个;若使用甲种方式切割的木板材y张,则使用乙种方式切割的木板材__________张;
(2)该200张木板材恰好能做成200个A和B两种规格的无盖木盒,请分别求出A,B木盒的个数和使用甲,乙两种方式切割的木板材张数;
(3)包括材质等成本在内,用甲种切割方式的木板材每张成本5元,用乙种切割方式的木板材每张成本8元.根据市场调研,A种木盒的销售单价定为a元,B种木盒的销售单价定为元,两种木盒的销售单价均不能低于7元,不超过18元.在(2)的条件下,两种木盒的销售单价分别定为多少元时,这批木盒的销售利润最大,并求出最大利润.
考点讲解:考点解析:破解此类题的关键:一是认真读题,构建相应的模型;二是解模.
【例1】
(2023·吉林长春·统考中考真题)
5.年5月8日,商业首航完成——中国民商业运营国产大飞机正式起步.时分航班抵达北京首都机场,穿过隆重的“水门礼”(寓意“接风洗尘”、是国际民航中高级别的礼仪).如图①,在一次“水门礼”的预演中,两辆消防车面向飞机喷射水柱,喷射的两条水柱近似看作形状相同的地物线的一部分.如图②,当两辆消防车喷水口A、B的水平距离为米时,两条水柱在物线的顶点H处相遇,此时相遇点H距地面米,喷水口A、B距地面均为4米.若两辆消防车同时后退米,两条水柱的形状及喷水口、到地面的距离均保持不变,则此时两条水柱相遇点距地面 米.
【变1】
(2023·湖北黄石·统考中考真题)
6.“神舟”十四号载人飞行任务是中国空间站建造阶段的首次载人飞行任务,也是空间站在轨建造以来情况最复杂、技术难度最高、航天员乘组工作量最大的一次载人飞行任务.如图,当“神舟”十四号运行到地球表面P点的正上方的F点处时,从点F能直接看到的地球表面最远的点记为Q点,已知,,则圆心角所对的弧长约为 km(结果保留).
考点解析:破解此类题的关键:一是认真读题,构建相应的模型;二是解模.
【例1】
(2023·四川遂宁·统考中考真题)
7.烷烃是一类由碳、氢元素组成的有机化合物,在生产生活中可作为燃料、润滑剂等原料,也可用于动、植物的养护.通常用碳原子的个数命名为甲烷、乙烷、丙烷、……、癸烷(当碳原子数目超过个时即用汉文数字表示,如十一烷、十二烷……)等,甲烷的化学式为,乙烷的化学式为,丙烷的化学式为……,其分子结构模型如图所示,按照此规律,十二烷的化学式为 .
【变1】
(2023·广西·统考中考真题)
8.【综合与实践】
有言道:“杆秤一头称起人间生计,一头称起天地良心”.某兴趣小组将利用物理学中杠杆原理制作简易杆秤.小组先设计方案,然后动手制作,再结合实际进行调试,请完成下列方案设计中的任务.
【知识背景】如图,称重物时,移动秤砣可使杆秤平衡,根据杠杆原理推导得:.其中秤盘质量克,重物质量m克,秤砣质量M克,秤纽与秤盘的水平距离为l厘米,秤纽与零刻线的水平距离为a厘米,秤砣与零刻线的水平距离为y厘米.
【方案设计】
目标:设计简易杆秤.设定,,最大可称重物质量为1000克,零刻线与末刻线的距离定为50厘米.
任务一:确定l和a的值.
(1)当秤盘不放重物,秤砣在零刻线时,杆秤平衡,请列出关于l,a的方程;
(2)当秤盘放入质量为1000克的重物,秤砣从零刻线移至末刻线时,杆秤平衡,请列出关于l,a的方程;
(3)根据(1)和(2)所列方程,求出l和a的值.
任务二:确定刻线的位置.
(4)根据任务一,求y关于m的函数解析式;
(5)从零刻线开始,每隔100克在秤杆上找到对应刻线,请写出相邻刻线间的距离.
[素养落地]---数学建模
【解读素养】数学建模活动是对现实问题进行数学抽象,用数学语言表达问题、用数学方法构建模型解决问题的过程.主要包括:在实际情境中从数学的视角发现问题、提出问题,分析问题、构建模型,确定参数、计算求解,检验结果、改进模型,最终解决实际问题.数学建摸活动是基本数学思维运用模型解决实际问题的一类综合实践活动,是初中阶段数学课程的重要内容.
(2023·湖南永州·统考中考真题)
9.小明观察到一个水龙头因损坏而不断地向外滴水,为探究其漏水造成的浪费情况,小明用一个带有刻度的量筒放在水龙头下面装水,每隔一分钟记录量简中的总水量,但由于操作延误,开始计时的时候量筒中已经有少量水,因而得到如下表的一组数据:
(1)探究:根据上表中的数据,请判断和(k,b为常数)哪一个能正确反映总水量y与时间t的函数关系?并求出y关于t的表达式;
(2)应用:
①请你估算小明在第20分钟测量时量筒的总水量是多少毫升?
②一个人一天大约饮用1500毫升水,请你估算这个水龙头一个月(按30天计)的漏水量可供一人饮用多少天.
一、选择题
(2023·山东泰安·统考中考真题)
10.2023年1月17日,国家航天局公布了我国嫦娥五号月球样品的科研成果.科学家们通过对月球样品的研究,精确测定了月球的年龄是亿年,数据亿年用科学记数法表示为( )
A.年B.年C.年D.年
(2023·四川遂宁·统考中考真题)
11.纳米是表示微小距离的单位,1纳米毫米,而1毫米相当于我们通常使用的刻度尺上的一小格,可想而知1纳米是多么的小.中科院物理所研究员解思深领导的研究组研制出世界上最细的碳纳米管——直径纳米.纳米相当于毫米,数据用科学记数法可以表示为( )
A.B.C.D.
(2023·山东·统考中考真题)
12.常言道:失之毫厘,谬以千里.当人们向太空发射火箭或者描述星际位置时,需要非常准确的数据.的角真的很小.把整个圆等分成360份,每份这样的弧所对的圆心角的度数是..若一个等腰三角形的腰长为1千米,底边长为4.848毫米,则其顶角的度数就是.太阳到地球的平均距离大约为千米.若以太阳到地球的平均距离为腰长,则顶角为的等腰三角形底边长为( )
A.24.24千米B.72.72千米C.242.4千米D.727.2千米
(2022·湖北十堰·统考中考真题)
13.如图,某零件的外径为10cm,用一个交叉卡钳(两条尺长AC和BD相等)可测量零件的内孔直径AB.如果OA:OC=OB:OD=3,且量得CD=3cm,则零件的厚度x为( )
A.B.C.D.
(2023·浙江衢州·统考中考真题)
14.如图,一款可调节的笔记本电脑支架放置在水平桌面上,调节杆,,的最大仰角为.当时,则点到桌面的最大高度是( )
A.B.C.D.
二、填空题
(2023·甘肃武威·统考中考真题)
15.近年来,我国科技工作者践行“科技强国”使命,不断取得世界级的科技成果,如由我国研制的中国首台作业型全海深自主遥控潜水器“海斗一号”,最大下潜深度10907米,填补了中国水下万米作业型无人潜水器的空白;由我国自主研发的极目一号Ⅲ型浮空艇“大白鲸”,升空高度至海拔9050米,创造了浮空艇原位大气科学观测海拔最高的世界记录.如果把海平面以上9050米记作“米”,那么海平面以下10907米记作“ 米”.
(2022·山东威海·统考中考真题)
16.幻方的历史很悠久,传说最早出现在夏禹时代的“洛书”.把洛书用今天的数学符号翻译出来,就是一个三阶幻方(如图1),将9个数填在3×3(三行三列)的方格中,如果满足每个横行、每个竖列、每条对角线上的三个数字之和都相等,就得到一个广义的三阶幻方.图2的方格中填写了一些数字和字母,若能构成一个广义的三阶幻方,则mn= .
(2023·四川南充·统考中考真题)
17.小伟用撬棍撬动一块大石头,已知阻力和阻力臂分别为1000N和0.6m,当动力臂由1.5m增加到2m时,撬动这块石头可以节省 N的力.(杠杆原理:阻力阻力臂动力动力臂)
(2022·重庆·统考中考真题)
18.特产专卖店销售桃片、米花糖、麻花三种特产,其中每包桃片的成本是麻花的2倍,每包桃片、米花糖、麻花的售价分别比其成本高20%、30%、20%.该店五月份销售桃片、米花糖、麻花的数量之比为1∶3∶2,三种特产的总利润是总成本的25%,则每包米花糖与每包麻花的成本之比为 .
三、解答题
(2023·江苏连云港·统考中考真题)
19.目前,我市对市区居民用气户的燃气收费,以户为基础、年为计算周期设定了如下表的三个气量阶梯:
(1)一户家庭人口为3人,年用气量为,则该年此户需缴纳燃气费用为__________元;
(2)一户家庭人口不超过4人,年用气量为,该年此户需缴纳燃气费用为元,求与的函数表达式;
(3)甲户家庭人口为3人,乙户家庭人口为5人,某年甲户、乙户缴纳的燃气费用均为3855元,求该年乙户比甲户多用多少立方米的燃气?(结果精确到)
(2022·浙江衢州·统考中考真题)
20.金师傅近期准备换车,看中了价格相同的两款国产车.
(1)用含的代数式表示新能源车的每千米行驶费用.
(2)若燃油车的每千米行驶费用比新能源车多0.54元.
①分别求出这两款车的每千米行驶费用.
②若燃油车和新能源车每年的其它费用分别为4800元和7500元.问:每年行驶里程为多少千米时,买新能源车的年费用更低?(年费用=年行驶费用+年其它费用)
(2023·湖南湘西·统考中考真题)
21.如图(1)所示,小明家、食堂、图书馆在同一条直线上食堂离小明家,图书馆离小明家.小明从家出发,匀速步行了去食堂吃早餐;吃完早餐后接着匀速步行了去图书馆读报;读完报以后接着匀速步行了回到家图()反映了这个过程中,小明离家的距离与时间之间的对应关系.
请根据相关信息解答下列问题:
(1)填空:
①食堂离图书馆的距离为__________;
②小明从图书馆回家的平均速度是__________;
③小明读报所用的时间为__________.
④小明离开家的距离为时,小明离开家的时间为__________.
(2)当时,请直接写出关于的函数解析式.
(2023·北京·统考中考真题)
22.对联是中华传统文化的瑰宝,对联装裱后,如图所示,上、下空白处分别称为天头和地头,左、右空白处统称为边.一般情况下,天头长与地头长的比是,左、右边的宽相等,均为天头长与地头长的和的.某人要装裱一副对联,对联的长为,宽为.若要求装裱后的长是装裱后的宽的4倍,求边的宽和天头长.(书法作品选自《启功法书》)
(2023·江苏扬州·统考中考真题)
23.近年来,市民交通安全意识逐步增强,头盔需求量增大.某商店购进甲、乙两种头盔,已知购买甲种头盔20只,乙种头盔30只,共花费2920元,甲种头盔的单价比乙种头盔的单价高11元.
(1)甲、乙两种头盔的单价各是多少元?
(2)商店决定再次购进甲、乙两种头盔共40只,正好赶上厂家进行促销活动,促销方式如下:甲种头盔按单价的八折出售,乙种头盔每只降价6元出售.如果此次购买甲种头盔的数量不低于乙种头盔数量的一半,那么应购买多少只甲种头盔,使此次购买头盔的总费用最小?最小费用是多少元?
(2023·江苏苏州·统考中考真题)
24.某动力科学研究院实验基地内装有一段笔直的轨道,长度为的金属滑块在上面做往返滑动.如图,滑块首先沿方向从左向右匀速滑动,滑动速度为,滑动开始前滑块左端与点重合,当滑块右端到达点时,滑块停顿,然后再以小于的速度匀速返回,直到滑块的左端与点重合,滑动停止.设时间为时,滑块左端离点的距离为,右端离点的距离为,记与具有函数关系.已知滑块在从左向右滑动过程中,当和时,与之对应的的两个值互为相反数;滑块从点出发到最后返回点,整个过程总用时(含停顿时间).请你根据所给条件解决下列问题:
(1)滑块从点到点的滑动过程中,的值________________;(填“由负到正”或“由正到负”)
(2)滑块从点到点的滑动过程中,求与的函数表达式;
(3)在整个往返过程中,若,求的值.
(2023·浙江台州·统考中考真题)
25.【问题背景】
“刻漏”是我国古代的一种利用水流计时的工具.综合实践小组准备用甲、乙两个透明的竖直放置的容器和一根带节流阀(控制水的流速大小)的软管制作简易计时装置.
【实验操作】
综合实践小组设计了如下的实验:先在甲容器里加满水,此时水面高度为30cm,开始放水后每隔10min观察一次甲容器中的水面高度,获得的数据如下表:
任务1 分别计算表中每隔10min水面高度观察值的变化量.
【建立模型】
小组讨论发现:“,”是初始状态下的准确数据,水面高度值的变化不均匀,但可以用一次函数近似地刻画水面高度h与流水时间t的关系.
任务2 利用时,;时,这两组数据求水面高度h与流水时间t的函数解析式.
【反思优化】
经检验,发现有两组表中观察值不满足任务2中求出的函数解析式,存在偏差.小组决定优化函数解析式,减少偏差.通过查阅资料后知道:t为表中数据时,根据解析式求出所对应的函数值,计算这些函数值与对应h的观察值之差的平方和,记为w;w越小,偏差越小.
任务3 (1)计算任务2得到的函数解析式的w值.
(2)请确定经过的一次函数解析式,使得w的值最小.
【设计刻度】
得到优化的函数解析式后,综合实践小组决定在甲容器外壁设计刻度,通过刻度直接读取时间.
任务4 请你简要写出时间刻度的设计方案.
(2023·广东深圳·统考中考真题)
26.蔬菜大棚是一种具有出色的保温性能的框架覆膜结构,它出现使得人们可以吃到反季节蔬菜.一般蔬菜大棚使用竹结构或者钢结构的骨架,上面覆上一层或多层保温塑料膜,这样就形成了一个温室空间.如图,某个温室大棚的横截面可以看作矩形和抛物线构成,其中,,取中点O,过点O作线段的垂直平分线交抛物线于点E,若以O点为原点,所在直线为x轴,为y轴建立如图所示平面直角坐标系.
请回答下列问题:
(1)如图,抛物线的顶点,求抛物线的解析式;
(2)如图,为了保证蔬菜大棚的通风性,该大棚要安装两个正方形孔的排气装置,,若,求两个正方形装置的间距的长;
(3)如图,在某一时刻,太阳光线透过A点恰好照射到C点,此时大棚截面的阴影为,求的长.
(2023·青海·统考中考真题)
27.综合与实践
车轮设计成圆形的数学道理
小青发现路上行驶的各种车辆,车轮都是圆形的.为什么车轮要做成圆形的呢?这里面有什么数学道理吗?带着这样的疑问,小青做了如下的探究活动:
将车轮设计成不同的正多边形,在水平地面上模拟行驶.
(1)探究一:将车轮设计成等边三角形,转动过程如图1,设其中心到顶点的距离是2,以车轮转动一次(以一个顶点为支点旋转)为例,中心的轨迹是,,圆心角.此时中心轨迹最高点是C(即的中点),转动一次前后中心的连线是(水平线),请在图2中计算C到的距离.
(2)探究二:将车轮设计成正方形,转动过程如图3,设其中心到顶点的距离是2,以车轮转动一次(以一个顶点为支点旋转)为例,中心的轨迹是,,圆心角.此时中心轨迹最高点是C(即的中点),转动一次前后中心的连线是(水平线),请在图4中计算C到的距离(结果保留根号).
(3)探究三:将车轮设计成正六边形,转动过程如图5,设其中心到顶点的距离是2,以车轮转动一次(以一个顶点为支点旋转)为例,中心的轨迹是,圆心角______.此时中心轨迹最高点是C(即的中点),转动一次前后中心的连线是(水平线),在图6中计算C到的距离______(结果保留根号).
(4)归纳推理:比较,,大小:______,按此规律推理,车轮设计成的正多边形边数越多,其中心轨迹最高点与转动一次前后中心连线(水平线)的距离______(填“越大”或“越小”).
(5)得出结论:将车轮设计成圆形,转动过程如图7,其中心(即圆心)的轨迹与水平地面平行,此时中心轨迹最高点与转动前后中心连线(水平线)的距离______.这样车辆行驶平稳、没有颠簸感.所以,将车轮设计成圆形.
时间t(单位:分钟)
1
2
3
4
5
…
总水量y(单位:毫升)
7
12
17
22
27
…
阶梯
年用气量
销售价格
备注
第一阶梯
(含400)的部分
2.67元
若家庭人口超过4人的,每增加1人,第一、二阶梯年用气量的上限分别增加.
第二阶梯
(含1200)的部分
3.15元
第三阶梯
以上的部分
3.63元
流水时间t/min
0
10
20
30
40
水面高度h/cm(观察值)
30
29
28.1
27
25.8
参考答案:
1.(1)组分组积分赛对阵表见解答过程;
(2)本届世界杯冠军阿根廷队在决赛阶段一共踢了7场比赛;
(3)本届世界杯32支球队在决赛阶段一共踢了64场比赛.
【分析】(1)根据同组内每2支球队之间都只进行一场比赛列表即可;
(2)冠军阿根廷队分组积分赛踢了3场,决赛,决赛,半决赛,决赛又踢了4场,即可得到答案;
(3)分组积分赛48场,决赛一共8场,决赛一共4场,半决赛2场,冠、亚军决赛和三、四名决赛各1场,相加即可.
【详解】(1)组分组积分赛对阵表:
(2)冠军阿根廷队分组积分赛踢了3场,决赛,决赛,半决赛,决赛又踢了4场,
一共踢了(场),
本届世界杯冠军阿根廷队在决赛阶段一共踢了7场比赛;
(3)分组积分赛每个小组6场,8个小组一共(场);
决赛一共8场,决赛一共4场,半决赛2场,冠、亚军决赛和三、四名决赛各1场;
一共踢了(场);
本届世界杯32支球队在决赛阶段一共踢了64场比赛.
【点睛】本题考查数学在实际生活中的应用,解题的关键是读懂题意,理解世界杯比赛的对阵规则.
2.(1)型玩具的单价;购买型玩具的数量
(2)最多购进型玩具个
【分析】(1)根据方程表示的意义,进行作答即可;
(2)设最多购进型玩具个,根据题意,列出方程进行求解即可.
【详解】(1)解:对于甲:表示的是:用520元购进型玩具的数量比用175元购进型玩具的数量多30个,
∴分别表示型玩具和型玩具的数量,
∴表示型玩具的单价;
对于乙:表示的是:型玩具单价是型玩具单价的倍,
∴,分别表示表示型玩具和型玩具的单价,
∴表示购买型玩具的数量;
故答案为:型玩具的单价;购买型玩具的数量
(2)设购进型玩具个,则购买型玩具个,
由(1)中甲同学所列方程的解可知:型玩具的单价为5元,则型玩具的单价为元,
由题意,得:,
解得:,
∵为整数,
∴;
答:最多购进型玩具个.
【点睛】本题考查分式方程和一元一次不等式的应用.读懂题意,找准等量关系,正确的列出方程和不等式,是解题的关键.
3.(1)见解析
(2)人
(3)
【分析】(1)根据属于正常的人数除以占比得出抽取的人数,结合条形统计图求得属于偏胖的人数,进而补全统计图即可求解;
(2)用属于偏胖和肥胖的占比乘以即可求解;
(3)设小张体重需要减掉,根据计算公式,列出不等式,解不等式即可求解.
【详解】(1)抽取了人,
属于偏胖的人数为:,
补全统计图如图所示,
(2)(人)
(3)设小张体重需要减掉,
依题意,
解得:,
答:他的体重至少需要减掉9kg,
故答案为:9.
【点睛】本题考查了条形统计图与扇形统计图信息关联,样本估计总体,一元一次不等式的应用,根据统计图表获取信息是解题的关键.
4.(1),
(2)制作A种木盒100个,B种木盒100个;使用甲种方式切割的木板150张,使用乙种方式切割的木板50张
(3)A种木盒的销售单价定为18元,B种木盒的销售单价定为11元时,这批木盒的销售利润最大,最大利润为1750元
【分析】(1)根据题意即可求解;
(2)根据题意可得,制作一个A种木盒需要长、宽均为的木板5个,制作一个B种木盒需要长、宽均为的木板1个,长为10cm、宽为的木板4个;甲种方式可切割长、宽均为的木板4个,乙种方式可切割长为10cm、宽为的木板8个;列关系式求解即可;
(3)先根据(2)中数据求得总成本金额,根据利润=售价-成本列式,根据一次函数的性质进行求解即可.
【详解】(1)解:∵要制作200个A,B两种规格的顶部无盖木盒,制作A种木盒x个,
故制作B种木盒个;
∵有200张规格为的木板材,使用甲种方式切割的木板材y张,
故使用乙种方式切割的木板材张;
故答案为:,.
(2)解:使用甲种方式切割的木板材y张,则可切割出个长、宽均为的木板,
使用乙种方式切割的木板材张,则可切割出个长为、宽为的木板;
设制作A种木盒x个,则需要长、宽均为的木板个,
制作B种木盒个,则需要长、宽均为的木板个,需要长为、宽为的木板个;
故
解得:,
故制作A种木盒100个,制作B种木盒100个,
使用甲种方式切割的木板150张,使用乙种方式切割的木板材50张,
(3)解:∵用甲种切割方式的木板材每张成本5元,用乙种切割方式的木板材每张成本8元,且使用甲种方式切割的木板150张,使用乙种方式切割的木板材50张,
故总成本为(元);
∵两种木盒的销售单价均不能低于7元,不超过18元,
即,
解得:,
故的取值范围为;
设利润为,则,
整理得:,
∵,故随的增大而增大,
故当时,有最大值,最大值为,
则此时B种木盒的销售单价定为(元),
即A种木盒的销售单价定为18元,B种木盒的销售单价定为11元时,这批木盒的销售利润最大,最大利润为1750元.
【点睛】本题考查了二元一次方程组的应用,一次函数的应用,一次函数的性质,一元一次不等式组的应用,根据题意找出等量关系进行列式是解题的关键.
5.
【分析】根据题意求出原来抛物线的解析式,从而求得平移后的抛物线解析式,再令求平移后的抛物线与轴的交点即可.
【详解】解:由题意可知:
、、,
设抛物线解析式为:,
将代入解析式,
解得:,
,
消防车同时后退米,即抛物线向左(右)平移米,
平移后的抛物线解析式为:,
令,解得:,
故答案为:.
【点睛】本题考查了待定系数法求抛物线解析式、函数图像的平移及坐标轴的交点;解题的关键是求得移动前后抛物线的解析式.
6.
【分析】设,由是的切线,可得,由此构建方程求出r,再利用弧长公式求解.
【详解】解:设,
由题意,是的切线,
∴,
∵,
∴,
∴,
∴的长.
故答案为:.
【点睛】本题考查解直角三角形的应用,弧长公式等知识,解题的关键是学会利用参数构建方程求解.
7.
【分析】根据碳原子的个数,氢原子的个数,找到规律,即可求解.
【详解】解:甲烷的化学式为,
乙烷的化学式为,
丙烷的化学式为……,
碳原子的个数为序数,氢原子的个数为碳原子个数的2倍多2个,
十二烷的化学式为,
故答案为:.
【点睛】本题考查了规律题,找到规律是解题的关键.
8.(1)
(2)
(3)
(4)
(5)相邻刻线间的距离为5厘米
【分析】(1)根据题意可直接进行求解;
(2)根据题意可直接代值求解;
(3)由(1)(2)可建立二元一次方程组进行求解;
(4)根据(3)可进行求解;
(5)分别把,,,,,,,,,,代入求解,然后问题可求解.
【详解】(1)解:由题意得:,
∴,
∴;
(2)解:由题意得:,
∴,
∴;
(3)解:由(1)(2)可得:,
解得:;
(4)解:由任务一可知:,
∴,
∴;
(5)解:由(4)可知,
∴当时,则有;当时,则有;当时,则有;当时,则有;当时,则有;当时,则有;当时,则有;当时,则有;当时,则有;当时,则有;当时,则有;
∴相邻刻线间的距离为5厘米.
【点睛】本题主要考查一次函数的应用,解题的关键是理解题意.
9.(1)能正确反映总水量y与时间t的函数关系;
(2)①102毫升;②144天
【分析】(1)观察表格,可发现前一分钟比后一分钟少5毫升的水,故可得能正确反映总水量y与时间t的函数关系,再选取两组数据代入函数解析式,根据待定系数法,即可得到y关于t的表达式;
(2)①将代入函数,即可解答;
②由解析式可知,每分钟滴水量为毫升,故可算出1个月的总滴水量,再除以一个人每天的饮水量,即可解答.
【详解】(1)解:观察表格,可发现前一分钟比后一分钟少5毫升的水,故可得能正确反映总水量y与时间t的函数关系,
把,代入,
可得,
解得,
y关于t的表达式;
(2)①当时,,
故小明在第20分钟测量时量筒的总水量是102毫升,
答:小明在第20分钟测量时量筒的总水量是102毫升.
②由解析式可知,每分钟的滴水量为毫升,
30天分钟分钟,
可供一人饮水天数天,
答:这个水龙头一个月(按30天计)的漏水量可供一人饮用144天.
【点睛】本题考查了待定系数法求一次函数,一次函数的应用,正确读懂题意,求得正确的一次函数解析式是解题的关键.
10.B
【分析】科学记数法的表现形式为的形式,其中,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n是正数,当原数绝对值小于1时n是负数;由此进行求解即可得到答案.
【详解】解:亿年年年,
故选B.
【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.
11.D
【分析】根据小于1的正数也可以利用科学记数法表示,一般形式为,,n为第一位有效数字前面0的个数.
【详解】解:
故选:D.
【点睛】此题主要考查了用科学记数法表示较小的数;一般形式为,,n为整数,确定a与n的值是解题的关键.
12.D
【分析】设以太阳到地球的平均距离为腰长,则顶角为的等腰三角形底边长为x毫米,根据顶角相等的两等腰三角形相似,相似三角形的对应边成比例,可列出方程,求解即可.
【详解】解:设以太阳到地球的平均距离为腰长,则顶角为的等腰三角形底边长为x毫米,根据题意,得
解得:
∴等腰三角形底边长为毫米千米.
故选:D.
【点睛】本题考查一元一次方程的应用.根据相似三角形判定与性质列出方程是解题的关键,注意单位换算.
13.B
【分析】求出△AOB和△COD相似,利用相似三角形对应边成比例列式计算求出AB,再根据外径的长度解答.
【详解】解:∵OA:OC=OB:OD=3,∠AOB=∠COD,
∴△AOB∽△COD,
∴AB:CD=3,
∴AB:3=3,
∴AB=9(cm),
∵外径为10cm,
∴9+2x=10,
∴x=0.5(cm).
故选:B.
【点睛】本题考查相似三角形的应用,解题的关键是利用相似三角形的性质求出AB的长.
14.D
【分析】过点作于,过点作于,利用解直角三角形可得,,根据点到桌面的最大高度,即可求得答案.
【详解】如图,过点作于,过点作于,
在中,,
在中,,
点到桌面的最大高度,
故选:D.
【点睛】本题考查了解直角三角形的应用,解题关键是添加辅助线,构造直角三角形,利用解直角三角形解决问题.
15.
【分析】根据正负数表示相反的意义解答即可.
【详解】解:把海平面以上9050米记作“米”,则海平面以下10907米记作米,
故答案为:.
【点睛】此题考查了正负数的理解:在一个事件中,规定一个量为正,则表示相反意义的量为负,正确理解正负数表示一对相反的意义的量是解题的关键.
16.1
【分析】由第二行方格的数字,字母,可以得出第二行的数字之和为m,然后以此得出可知第三行左边的数字为4,第一行中间的数字为m-n+4,第三行中间数字为n-6,第三行右边数字为,再根据对角线上的三个数字之和相等且都等于m可得关于m,n方程组,解出即可.
【详解】如图,根据题意,可得
第二行的数字之和为:m+2+(-2)=m
可知第三行左边的数字为:m-(-4)-m=4
第一行中间的数字为:m-n-(-4)=m-n+4
第三行中间数字为m-2-(m-n+4)=n-6
第三行右边数字为:m-n-(-2)=m-n+2
再根据对角线上的三个数字之和相等且都等于m可得方程组为:
解得
∴
故答案为:1
【点睛】本题考查了有理数加法,列代数式,以及二元一次方程组,解题的关键是根据表格,利用每行,每列,每条对角线上的三个数之和相等列方程.
17.100
【分析】设动力为,根据阻力阻力臂动力动力臂,分别解得动力臂在1.5m和2m时的动力,即可解答.
【详解】解:设动力为,
根据阻力阻力臂动力动力臂,
当动力臂在1.5m时,可得方程,解得,
当动力臂在2m时,可得方程,解得,
,故节省100N的力,
故答案为:100.
【点睛】本题考查了一元一次方程的实际应用,根据题目中给出的等量关系,正确列方程是解题的关键.
18.4:3
【分析】设每包麻花的成本为x元,每包米花糖的成本为y元,桃片的销售量为m包,则每包桃片的成本为2x元,米花糖的销售量为3m包,麻花的销售量为2m包,根据三种特产的总利润是总成本的25%列得,计算可得.
【详解】解:设每包麻花的成本为x元,每包米花糖的成本为y元,桃片的销售量为m包,则每包桃片的成本为2x元,米花糖的销售量为3m包,麻花的销售量为2m包,由题意得
,
解得3y=4x,
∴y:x=4:3,
故答案为:4:3.
【点睛】此题考查了三元一次方程的实际应用,正确理解题意确定等量关系是解题的关键.
19.(1)534
(2)
(3)26立方米
【分析】(1)根据第一阶梯的费用计算方法进行计算即可;
(2)根据“单价×数量=总价”可得y与x之间的函数关系式;
(3)根据两户的缴费判断收费标准列式计算即可解答.
【详解】(1)∵,
∴该年此户需缴纳燃气费用为:(元),
故答案为:534;
(2)关于的表达式为
(3)∵,
∴甲户该年的用气量达到了第三阶梯.
由(2)知,当时,,解得.
又∵,
且,
∴乙户该年的用气量达到第二阶梯,但末达到第三阶梯.
设乙户年用气量为.则有,
解得,
∴.
答:该年乙户比甲户多用约26立方米的燃气.
【点睛】本题考查了一次函数的应用,一元一次方程的应用以及列代数式,解题的关键是找准等量关系,正确列出一元一次方程.
20.(1)元
(2)①燃油车的每千米行驶费用为元,新能源车的每千米行驶费用为元;②每年行驶里程超过5000千米时,买新能源车的年费用更低
【分析】(1)利用电池电量乘以电价,再除以续航里程即可得;
(2)①根据燃油车的每千米行驶费用比新能源车多元建立方程,解方程可得的值,由此即可得;
②设每年行驶里程为千米时,买新能源车的年费用更低,根据这两款车的年费用建立不等式,解不等式即可得.
【详解】(1)解:新能源车的每千米行驶费用为元,
答:新能源车的每千米行驶费用为元.
(2)解:①由题意得:,
解得,
经检验,是所列分式方程的解,
则,,
答:燃油车的每千米行驶费用为元,新能源车的每千米行驶费用为元;
②设每年行驶里程为千米时,买新能源车的年费用更低,
由题意得:,
解得,
答:每年行驶里程超过5000千米时,买新能源车的年费用更低.
【点睛】本题考查了列代数式、分式方程的应用、一元一次不等式的应用,正确建立方程和不等式是解题关键.
21.(1)①;②;③;④或.
(2)
【分析】(1)①由图象中的数据,可以直接写出食堂离小明家的距离和小明从家到食堂用的时间;②根据图象中的数据,用路程除以时间即可得解;③用减去即可得解;④设小明离开家的距离为时,小明离开家的时间为,分小明去时和小明返回时两种情况构造一元一次方程求解即可;
(2)根据图象中的数据,利用待定系数法分别求出当、和时三段对应的函数解析式即可.
【详解】(1)解:①,
∴小食堂离图书馆的距离为,
故答案为∶;
②根据题意,
∴小明从图书馆回家的平均速度是,
故答案为:;
③,
故答案为:;
④设小明离开家的距离为时,小明离开家的时间为,
当去时,小明离开家的距离为时,
∵,
∴小明到食堂时,小明离开家的距离为不足,
由题意得,
解得,
当返回时,离家的距离为时,根据题意,得,
解得;
故答案为:或.
(2)解:设时,
∵过,
∴,
解得,
∴时,
由图可知,当时,
设时,,
∵过,,
∴,
解得,
∴,
综上所述,当时,关于的函数解析式为.
【点睛】本题考查函数的图象、一元一次方程的应用以及待定系数法求一次函数的解析式,解答本题的关键是明确题意,利用数形结合的思想解答.
22.边的宽为,天头长为
【分析】设天头长为,则地头长为,边的宽为,再分别表示础装裱后的长和宽,根据装裱后的长是装裱后的宽的4倍列方程求解即可.
【详解】解:设天头长为,
由题意天头长与地头长的比是,可知地头长为,
边的宽为,
装裱后的长为,
装裱后的宽为,
由题意可得:
解得,
∴,
答:边的宽为,天头长为.
【点睛】本题考查了一元一次方程的应用,题中的数量关系较为复杂,需要合理设未知数,找准数量关系.
23.(1)甲、乙两种头盔的单价各是65元, 54元.
(2)购14只甲种头盔,此次购买头盔的总费用最小,最小费用为1976元.
【分析】(1)设购买乙种头盔的单价为x元,则甲种头盔的单价为元,根据题意,得,求解;
(2)设购m只甲种头盔,此次购买头盔的总费用最小,设总费用为w,则,解得,故最小整数解为,,根据一次函数增减性,求得最小值=.
【详解】(1)解:设购买乙种头盔的单价为x元,则甲种头盔的单价为元,根据题意,得
解得,,
,
答:甲、乙两种头盔的单价各是65元, 54元.
(2)解:设购m只甲种头盔,此次购买头盔的总费用最小,设总费用为w,
则,解得,故最小整数解为,
,
∵,则w随m的增大而增大,
∴时,w取最小值,最小值.
答:购14只甲种头盔,此次购买头盔的总费用最小,最小费用为1976元.
【点睛】本题考查一元一次方程的应用,一次函数的性质,一次函数的应用、一元一次不等式的应用;根据题意列出函数解析式,确定自变量取值范围是解题的关键.
24.(1)由负到正
(2)
(3)当或时,
【分析】(1)根据等式,结合题意,即可求解;
(2)设轨道的长为,根据已知条件得出,则,根据当和时,与之对应的的两个值互为相反数;则时,,得出,继而求得滑块返回的速度为,得出,代入,即可求解;
(3)当时,有两种情况,由(2)可得,①当时,②当时,分别令,进而即可求解.
【详解】(1)∵,
当滑块在点时,,,
当滑块在点时,,,
∴的值由负到正.
故答案为:由负到正.
(2)解:设轨道的长为,当滑块从左向右滑动时,
∵,
∴,
∴
∴是的一次函数,
∵当和时,与之对应的的两个值互为相反数;
∴当时,,
∴,
∴,
∴滑块从点到点所用的时间为,
∵整个过程总用时(含停顿时间).当滑块右端到达点时,滑块停顿,
∴滑块从点到点的滑动时间为,
∴滑块返回的速度为,
∴当时,,
∴,
∴,
∴与的函数表达式为;
(3)当时,有两种情况,
由(2)可得,
①当时,,
解得:;
②当时,,
解得:,
综上所述,当或时,.
【点睛】本题考查了一次函数的应用,分析得出,并求得往返过程中的解析式是解题的关键.
25.任务1:见解析;任务2:;任务3:(1),(2);任务4:见解析
【分析】任务1:根据表格每隔10min水面高度数据计算即可;
任务2:根据每隔10min水面高度观察值的变化量大约相等,得出水面高度h与流水时间t的是一次函数关系,由待定系数法求解;
任务3:(1)先求出对应时间的水面高度,再按要求求w值;
(2)设,然后根据表格中数据求出此时w的值是关于k的二次函数解析式;由此求出w的值最小时k值即可;
任务4:根据高度随时间变化规律,以相同时间刻画不同高度即可,类似如数轴三要素,有原点、正方向与单位长度.最大量程约为294min可以代替单位长度要素.
【详解】解:任务1:变化量分别为,;;
;;
任务2:设,
∵时,,时,;
∴
∴水面高度h与流水时间t的函数解析式为.
任务3:(1)当时,,
当时,,
当时,,
当时,,
当时,,
∴
.
(2)设,则
.
当时,w最小.
∴优化后的函数解析式为.
任务4:时间刻度方案要点:
①时间刻度的0刻度在水位最高处;
②刻度从上向下均匀变大;
③每0.102cm表示1min(1cm表示时间约为9.8min).
【点睛】本题主要考查一次函数和二次函数的应用、方差的计算,熟练掌握待定系数法求解析式及一次函数的函数值、二次函数的最值是解题的关键.
26.(1)
(2)
(3)
【分析】(1)根据顶点坐标,设函数解析式为,求出点坐标,待定系数法求出函数解析式即可;
(2)求出时对应的自变量的值,得到的长,再减去两个正方形的边长即可得解;
(3)求出直线的解析式,进而设出过点的光线解析式为,利用光线与抛物线相切,求出的值,进而求出点坐标,即可得出的长.
【详解】(1)解:∵抛物线的顶点,
设抛物线的解析式为,
∵四边形为矩形,为的中垂线,
∴,,
∵,
∴点,代入,得:
,
∴,
∴抛物线的解析式为;
(2)∵四边形,四边形均为正方形,,
∴,
延长交于点,延长交于点,则四边形,四边形均为矩形,
∴,
∴,
∵,当时,,解得:,
∴,,
∴,
∴;
(3)∵,垂直平分,
∴,
∴,
设直线的解析式为,
则:,解得:,
∴,
∵太阳光为平行光,
设过点平行于的光线的解析式为,
由题意,得:与抛物线相切,
联立,整理得:,
则:,解得:;
∴,当时,,
∴,
∵,
∴.
【点睛】本题考查二次函数的实际应用.读懂题意,正确的求出二次函数解析式,利用数形结合的思想,进行求解,是解题的关键.
27.(1)1
(2)
(3)
(4),越小
(5)0
【分析】(1)是等边三角形,进而求得,进一步得出结果;
(2)是等腰直角三角形,进而求得,进一步得出结果;
(3)是等边三角形,进而求得,进一步得出结果;
(4)比较大小得出结果;
(5)圆的半径相等,从而得出结果.
【详解】(1)解:图1,
,,
,
,
是等边三角形,
,
∵C为的中点,为半径,
∴,
;
(2)解:如图2,
,,,
,
,
;
(3)解:如图3,
,,
是等边三角形,
,
在中,
,
,
故答案为:,;
(4)解:,
,则其中心轨迹最高点与转动一次前后中心连线(水平线)的距离越小;
故答案为:;越小.
(5)解:圆的半径相等,
,
故答案为:0.
【点睛】本题考查了等腰三角形的性质,正方形的性质,圆的定义,解直角三角形等知识,解决问题的关键是弄清数量间的关系.
阿根廷
沙特
墨西哥
波兰
阿根廷
阿根廷:沙特
阿根廷:墨西哥
阿根廷:波兰
沙特
沙特:阿根廷
沙特:墨西哥
沙特:波兰
墨西哥
墨西哥:阿根廷
墨西哥:沙特
墨西哥:波兰
波兰
波兰:阿根廷
波兰:沙特
波兰:墨西哥
相关试卷
这是一份模块三 思想全把握专题3 方程思想 -最新中考数学二轮专题复习训练(含解析),共31页。
这是一份模块三 思想全把握专题2 函数思想 -最新中考数学二轮专题复习训练(含解析),共38页。
这是一份模块三 思想全把握专题1 整体思想 -最新中考数学二轮专题复习训练(含解析),共43页。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)