所属成套资源:2025年高考数学一轮复习讲义(知识梳理+真题自测+考点突破+分层检测)(新高考专用)(原卷版+解析
2025年高考数学一轮复习讲义之模拟检测卷02(新高考专用)(原卷版+解析)
展开
这是一份2025年高考数学一轮复习讲义之模拟检测卷02(新高考专用)(原卷版+解析),共23页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
1.(2024·云南贵州·二模)已知复数满足(为虚数单位),则的虚部为( )
A.B.C.D.
2.(2024·江苏宿迁·一模)已知集合,则( )
A.B.C.D.
3.(2023·北京东城·一模)恩格斯曾经把对数的发明、解析几何的创始和微积分的建立称为十七世纪数学的三大成就.其中对数的发明曾被十八世纪法国数学家拉普拉斯评价为“用缩短计算时间延长了天文学家的寿命”.已知正整数N的70次方是一个83位数,则由下面表格中部分对数的近似值(精确到0.001),可得N的值为( )
A.13B.14C.15D.16
4.(2024·全国·模拟预测)如图所示,已知一质点在外力的作用下,从原点出发,每次向左移动的概率为,向右移动的概率为.若该质点每次移动一个单位长度,设经过5次移动后,该质点位于的位置,则( )
A.B.C.D.
5.(2023·广东佛山·二模)已知方程,其中.现有四位同学对该方程进行了判断,提出了四个命题:
甲:可以是圆的方程; 乙:可以是抛物线的方程;
丙:可以是椭圆的标准方程; 丁:可以是双曲线的标准方程.
其中,真命题有( )
A.1个B.2个C.3个D.4个
6.(2024·天津·高考真题)一个五面体.已知,且两两之间距离为1.并已知.则该五面体的体积为( )
A.B.C.D.
7.(2024·贵州黔东南·二模)已知正实数,满足,则的最大值为( )
A.0B.C.1D.
8.(2024·浙江·二模)已知函数满足对任意的且都有,若,,则( )
A.B.C.D.
二、多选题(本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分)
9.(2024·全国·模拟预测)已知两个不等的平面向量满足,其中是常数,则下列说法正确的是( )
A.若,则或
B.若,则在上的投影向量的坐标是
C.当取得最小值时,
D.若的夹角为锐角,则的取值范围为
10.(2024·辽宁沈阳·一模)如图,点是函数的图象与直线相邻的三个交点,且,则( )
A.
B.
C.函数在上单调递减
D.若将函数的图象沿轴平移个单位,得到一个偶函数的图像,则的最小值为
11.(23-24高三下·湖北武汉·阶段练习)定义在上的函数与的导函数分别为和,若,,且,则下列说法中一定正确的是( )
A.为偶函数B.为奇函数
C.函数是周期函数D.
三、填空题(本大题共3小题,每小题5分,共15分,把答案填在题中的横线上)
12.(2023·天津·高考真题)在的展开式中,的系数为 .
13.(2024·广东江苏·高考真题)设双曲线的左右焦点分别为,过作平行于轴的直线交C于A,B两点,若,则C的离心率为 .
14.(2024·山东青岛·一模)已知球O的表面积为,正四面体ABCD的顶点B,C,D均在球O的表面上,球心O为的外心,棱AB与球面交于点P.若平面,平面,平面,平面,且与之间的距离为同一定值,棱AC,AD分别与交于点Q,R,则的周长为 .
四、解答题(本大题共5小题,共77分,解答应写出文字说明,证明过程或演算步骤)
15. (13分) (23-24高二上·四川内江·期末)设为数列的前项和,已知,.
(1)数列是否是等比数列?若是,则求出通项公式,若不是请说明理由;
(2)设,数列的前项和为,证明:.
16. (15分) (23-24高三上·江苏常州·期中)已知函数.
(1)讨论的单调性;
(2)对于,使得,求实数的取值范围.
17. (15分) (23-24高三下·山东菏泽·阶段练习)学校食堂为了减少排队时间,从开学第天起,每餐只推出即点即取的米饭套餐和面食套餐.某同学每天中午都会在食堂提供的两种套餐中选择一种套餐,若他前天选择了米饭套餐,则第天选择米饭套餐的概率为;若他前天选择了面食套餐,则第天选择米饭套餐的概率为.已知他开学第天中午选择米饭套餐的概率为.
(1)求该同学开学第天中午选择米饭套餐的概率;
(2)记该同学开学第天中午选择米饭套餐的概率为证明:当时,.
18. (17分) (2023·广东佛山·二模)中国正在由“制造大国”向“制造强国”迈进,企业不仅仅需要大批技术过硬的技术工人,更需要努力培育工人们执着专注、精益求精、一丝不苟、追求卓越的工匠精神,这是传承工艺、革新技术的重要基石.如图所示的一块木料中,是正方形,平面,,点,是,的中点.
(1)若要经过点和棱将木料锯开,在木料表面应该怎样画线,请说明理由并计算截面周长;
(2)若要经过点B,E,F将木料锯开,在木料表面应该怎样画线,请说明理由.
19. (17分) (2024·广东深圳·二模)设抛物线C:(),直线l:交C于A,B两点.过原点O作l的垂线,交直线于点M.对任意,直线AM,AB,BM的斜率成等差数列.
(1)求C的方程;
(2)若直线,且与C相切于点N,证明:的面积不小于
成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjshuxue加入百度网盘群1.5T一线老师必备资料一键转存自动更新永不过期
M
2
3
7
11
13
0.301
0.477
0.845
1.041
1.114
2025年高考数学一轮复习讲义之模拟检测卷02(新高考专用)
一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.(2024·云南贵州·二模)已知复数满足(为虚数单位),则的虚部为( )
A.B.C.D.
2.(2024·江苏宿迁·一模)已知集合,则( )
A.B.C.D.
3.(2023·北京东城·一模)恩格斯曾经把对数的发明、解析几何的创始和微积分的建立称为十七世纪数学的三大成就.其中对数的发明曾被十八世纪法国数学家拉普拉斯评价为“用缩短计算时间延长了天文学家的寿命”.已知正整数N的70次方是一个83位数,则由下面表格中部分对数的近似值(精确到0.001),可得N的值为( )
A.13B.14C.15D.16
4.(2024·全国·模拟预测)如图所示,已知一质点在外力的作用下,从原点出发,每次向左移动的概率为,向右移动的概率为.若该质点每次移动一个单位长度,设经过5次移动后,该质点位于的位置,则( )
A.B.C.D.
5.(2023·广东佛山·二模)已知方程,其中.现有四位同学对该方程进行了判断,提出了四个命题:
甲:可以是圆的方程; 乙:可以是抛物线的方程;
丙:可以是椭圆的标准方程; 丁:可以是双曲线的标准方程.
其中,真命题有( )
A.1个B.2个C.3个D.4个
6.(2024·天津·高考真题)一个五面体.已知,且两两之间距离为1.并已知.则该五面体的体积为( )
A.B.C.D.
7.(2024·贵州黔东南·二模)已知正实数,满足,则的最大值为( )
A.0B.C.1D.
8.(2024·浙江·二模)已知函数满足对任意的且都有,若,,则( )
A.B.C.D.
二、多选题(本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分)
9.(2024·全国·模拟预测)已知两个不等的平面向量满足,其中是常数,则下列说法正确的是( )
A.若,则或
B.若,则在上的投影向量的坐标是
C.当取得最小值时,
D.若的夹角为锐角,则的取值范围为
10.(2024·辽宁沈阳·一模)如图,点是函数的图象与直线相邻的三个交点,且,则( )
A.
B.
C.函数在上单调递减
D.若将函数的图象沿轴平移个单位,得到一个偶函数的图像,则的最小值为
11.(23-24高三下·湖北武汉·阶段练习)定义在上的函数与的导函数分别为和,若,,且,则下列说法中一定正确的是( )
A.为偶函数B.为奇函数
C.函数是周期函数D.
三、填空题(本大题共3小题,每小题5分,共15分,把答案填在题中的横线上)
12.(2023·天津·高考真题)在的展开式中,的系数为 .
13.(2024·广东江苏·高考真题)设双曲线的左右焦点分别为,过作平行于轴的直线交C于A,B两点,若,则C的离心率为 .
14.(2024·山东青岛·一模)已知球O的表面积为,正四面体ABCD的顶点B,C,D均在球O的表面上,球心O为的外心,棱AB与球面交于点P.若平面,平面,平面,平面,且与之间的距离为同一定值,棱AC,AD分别与交于点Q,R,则的周长为 .
四、解答题(本大题共5小题,共77分,解答应写出文字说明,证明过程或演算步骤)
15. (13分) (23-24高二上·四川内江·期末)设为数列的前项和,已知,.
(1)数列是否是等比数列?若是,则求出通项公式,若不是请说明理由;
(2)设,数列的前项和为,证明:.
16. (15分) (23-24高三上·江苏常州·期中)已知函数.
(1)讨论的单调性;
(2)对于,使得,求实数的取值范围.
17. (15分) (23-24高三下·山东菏泽·阶段练习)学校食堂为了减少排队时间,从开学第天起,每餐只推出即点即取的米饭套餐和面食套餐.某同学每天中午都会在食堂提供的两种套餐中选择一种套餐,若他前天选择了米饭套餐,则第天选择米饭套餐的概率为;若他前天选择了面食套餐,则第天选择米饭套餐的概率为.已知他开学第天中午选择米饭套餐的概率为.
(1)求该同学开学第天中午选择米饭套餐的概率;
(2)记该同学开学第天中午选择米饭套餐的概率为证明:当时,.
18. (17分) (2023·广东佛山·二模)中国正在由“制造大国”向“制造强国”迈进,企业不仅仅需要大批技术过硬的技术工人,更需要努力培育工人们执着专注、精益求精、一丝不苟、追求卓越的工匠精神,这是传承工艺、革新技术的重要基石.如图所示的一块木料中,是正方形,平面,,点,是,的中点.
(1)若要经过点和棱将木料锯开,在木料表面应该怎样画线,请说明理由并计算截面周长;
(2)若要经过点B,E,F将木料锯开,在木料表面应该怎样画线,请说明理由.
19. (17分) (2024·广东深圳·二模)设抛物线C:(),直线l:交C于A,B两点.过原点O作l的垂线,交直线于点M.对任意,直线AM,AB,BM的斜率成等差数列.
(1)求C的方程;
(2)若直线,且与C相切于点N,证明:的面积不小于.
参考答案:
1.A
【分析】根据复数的除法运算化简,即可根据虚部的概念求解.
【详解】由可得,
故虚部为,
故选:A
2.C
【分析】求出集合或明确集合中元素的特征,根据集合的交集运算,即可求得答案.
【详解】由题意得,被3除余数为2的整数,
,
故选:C.
3.C
【分析】利用对数的运算公式计算即可.
【详解】由题意知,的70次方为83位数,所以,则,即,整理得,
根据表格可得,,所以,即.
故选:C.
4.D
【分析】由题意当时,的可能取值为1,3,5,且,根据二项分布的概率公式计算即可求解.
【详解】依题意,当时,的可能取值为1,3,5,且,
所以
.
故选:D.
5.C
【分析】根据圆,抛物线,椭圆及双曲线的方程特点结合条件分析即得.
【详解】因为方程,其中,
所以当时,方程为,即是圆的方程,故方程可以是圆的方程;
当时,方程为,即是抛物线的方程,故方程可以是抛物线的方程;
当时,方程为,即是椭圆的标准方程,故方程可以是椭圆的标准方程;
若方程为双曲线的标准方程,则有,这与矛盾,故方程不可以是双曲线的标准方程;
所以真命题有3个.
故选:C.
6.C
【分析】采用补形法,补成一个棱柱,求出其直截面,再利用体积公式即可.
【详解】用一个完全相同的五面体(顶点与五面体一一对应)与该五面体相嵌,使得;;重合,
因为,且两两之间距离为1.,
则形成的新组合体为一个三棱柱,
该三棱柱的直截面(与侧棱垂直的截面)为边长为1的等边三角形,侧棱长为,
.
故选:C.
7.A
【分析】根据等式关系构造函数,由其单调性可得,于是结合基本不等式可得的最大值.
【详解】由题,构造函数,则,
显然在上单调递增,所以,即,
所以,当且仅当,时等号成立.
所以的最大值为0.
故选:A.
【点睛】关键点点睛:函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.
8.D
【分析】根据将,再用裂项相消法求的值.
【详解】∵函数满足对任意的且都有
∴令,则,
∴
∴
.
故选:D
【点睛】关键点点睛:本题主要考查数列的求和问题,关键是理解数列的规律,即研究透通项,本题的关键是将通项分析为:
9.BC
【分析】根据平面向量平行、垂直、数量积的坐标运算,投影向量的概念进行求解.
【详解】选项A:若,则,解得或,但当时,,与题意不符合,故A错误;
选项B:若,则,解得,
因此,,则在上的投影向量为,故B正确;
选项C:,
则当时,取得最小值,此时,,故C正确;
选项D:若的夹角为锐角,则与不同向,
得,解得且,故D错误.
故选:BC
10.ACD
【分析】令求得根据求得,根据求得的解析式,再逐项验证BCD选项.
【详解】令得,或,,
由图可知:,,,
所以,,
所以,所以,故A选项正确,
所以,由且处在减区间,得,
所以,,
所以,,
所以,
,故B错误.
当时,,
因为在为减函数,故在上单调递减,故C正确;
将函数的图象沿轴平移个单位得,(时向右平移,时向左平移),
为偶函数得,,
所以,,则的最小值为,故D正确.
故选:ACD.
11.BCD
【分析】结合函数与导数的关系,函数的奇偶性、对称性与周期性的定义,借助赋值法与函数性质逐项判断即可得.
【详解】对A:由,故为奇函数,
若为偶函数,则,与条件不符,故A错误;
对B:由,则,
又,即,
即,又定义在上,
故为奇函数,故B正确;
对C:由,,,
所以,则,
所以,,
所以,所以,
则函数是周期函数的周期函数,函数是周期函数的周期函数,故C正确;
对D:由是周期函数的周期函数,
由,令,则,即,
令,则,即,
由,,
则,则关于对称,则关于对称,
又为奇函数,即关于中心对称,
故关于对称,则,
则,故D正确.
故选:BCD.
【点睛】结论点睛:解决抽象函数的求值、性质判断等问题,常见结论:
(1)关于对称:若函数关于直线轴对称,则,若函数关于点中心对称,则,反之也成立;
(2)关于周期:若,或,或,可知函数的周期为.
12.
【分析】由二项式展开式的通项公式写出其通项公式,令确定的值,然后计算项的系数即可.
【详解】展开式的通项公式,
令可得,,
则项的系数为.
故答案为:60.
13.
【分析】由题意画出双曲线大致图象,求出,结合双曲线第一定义求出,即可得到的值,从而求出离心率.
【详解】由题可知三点横坐标相等,设在第一象限,将代入
得,即,故,,
又,得,解得,代入得,
故,即,所以.
故答案为:
14./
【分析】结合球的表面积公式,根据正三角形外接圆的性质求得边长,利用三点共线及数量积的运算律求得,然后利用平行平面的性质求得,,再利用余弦定理求得,即可求解的周长.
【详解】设与之间的距离为d,设球O的半径为R,则由题意得,解得,
所以,所以,所以,
由A,P,B三点共线,故存在实数使得,
所以,所以,即,
解得,所以,所以,所以,
又且与之间的距离为d,则,,
所以,,所以,
又,所以的周长为.
故答案为:
【点睛】关键点点睛:本题考查学生的空间想象能力,解题关键是找到点的位置.本题中应用正四面体的性质结合球的半径,求出边长,利用平行平面的距离,得到所求三角形的边长即可求解.
15.(1)是等比数列,;
(2)证明见解析.
【分析】(1)应用求得且,注意验证,即可判断是否为等比数列,进而写出通项公式;
(2)由(1)得,裂项相消法求,即可证结论.
【详解】(1)由题设,即,且,
又时,,可得,
综上,是公比为2的等比数列,通项公式为.
(2)由题设,故,
所以
,又,
所以,得证.
16.(1)答案见解析;
(2).
【分析】(1)对函数求导,讨论、研究导数符号确定区间单调性;
(2)问题化为对恒成立,讨论、求参数范围.
【详解】(1)由题设且,
当时在上递减;
当时,令,
当时在区间上递减;
当时在上递增.
所以当时,fx的减区间为,无增区间;
当a>0时,fx的增区间为,减区间为.
(2)由题设知对恒成立.
当时,此时,不合题设,舍去.
当时,在上递增,只需符合.
综上:.
17.(1)
(2)证明见解析
【分析】(1)由已知结合全概率公式即可求解;
(2)由已知结合全概率公式及等比数列的定义即可求出的通项公式,分类讨论即可证明.
【详解】(1)设“第天选择米饭套餐”,则“第天选择面食套餐”,
根据题意,,,,
由全概率公式,得;
(2)设“第天选择米饭套餐”,
则,,,,
由全概率公式,得,
即,所以,
因为,所以是以为首项,为公比的等比数列;
可得,
当为大于的奇数时,;
当为正偶数时,,
综上所述:当时,.
18.(1)详见解析;
(2)详见解析.
【分析】(1)根据线面平行的判定定理可得平面,设的中点为,根据线面平行的性质可得就是应画的线,然后根据线面垂直的判定定理结合条件可得截面周长;
(2)建立空间直角坐标系,可得平面的法向量,设平面,根据线面垂直的性质可得的位置,进而即得.
【详解】(1)因为平面,平面,
所以平面,又平面,
设平面平面,则,
设的中点为,连接,则,又,
所以,即为,就是应画的线,
因为平面,平面,
所以,又,,平面,
所以平面,平面,
所以,即截面为直角梯形,又,
所以,,
所以,截面周长为;
(2)以点为坐标原点,,,分别为,,轴的正向建立空间直角坐标系,
则,,,,,,,
所以,
设平面的法向量为,
则,令,可得,
设平面,设,又,
∴,,
由,可得,即,
即为的三等分点,连接,即就是应画的线.
19.(1);
(2)证明见解析.
【分析】(1)根据题意,分与代入计算,联立直线与抛物线方程,结合韦达定理代入计算,再由等差中项的定义列出方程,即可得到结果;
(2)方法一:联立直线与抛物线的方程,表示出中点的坐标,再由点M,N,E三点共线可得△AMN面积为△ABM面积的,结合三角形的面积公式代入计算,即可证明;方法二:联立直线与抛物线的方程,再由,得,点,即可得到直线MN与x轴垂直,再由三角形的面积公式代入计算,即可证明.
【详解】(1)
设点Ax1,y1,Bx2,y2,
由题可知,当时,显然有;
当时,直线OM的方程为,点.
联立直线AB与C的方程得,,
所以,,
因为直线AM,AB,BM的斜率成等差数列,
所以.
即,,
化简得.
将代入上式得,
则,
所以曲线C的方程为.
(2)
(法一)设直线:,联立C的方程,得.
由,得,点,
设AB的中点为E,
因为,,则点.
因为,
所以点M,N,E三点共线,且点N为ME的中点,
所以△AMN面积为△ABM面积的.
记△AMN的面积为S,点到直线AB:的距离,
所以,
当时,等号成立.所以命题得证.
(法二)设直线:,联立C的方程,得.
由,得,点.
所以直线MN与x轴垂直.
记△AMN的面积为S,
所以
.
当时,等号成立.
所以命题得证.
【点睛】关键点点睛:本题第二问的关键采用设线法,联立抛物线方程,根据相切求出,再得出,最后计算出面积表达式求出其最值即可.
成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjshuxue加入百度网盘群1.5T一线老师必备资料一键转存自动更新永不过期
M
2
3
7
11
13
0.301
0.477
0.845
1.041
1.114
题号
1
2
3
4
5
6
7
8
9
10
答案
A
C
C
D
C
C
A
D
BC
ACD
题号
11
答案
BCD
相关试卷
这是一份2025年高考数学一轮复习讲义之滚动测试卷05(新高考专用)(原卷版+解析),共19页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
这是一份2025年高考数学一轮复习讲义之滚动测试卷03(新高考专用)(原卷版+解析),共26页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
这是一份2025年高考数学一轮复习讲义之滚动测试卷02(新高考专用)(原卷版+解析),共23页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。