所属成套资源:2025年中考数学一轮复习讲与 考点精析+真题精讲+题型突破+专题精练(2份,原卷版+解析版)
- 2025年中考数学一轮复习讲与练第2章第1讲 一次方程(组)(题型突破+专题精练)(2份,原卷版+解析版) 试卷 0 次下载
- 2025年中考数学一轮复习讲与练第2章第2讲 一元二次方程(考点精析+真题精讲)(2份,原卷版+解析版) 试卷 0 次下载
- 2025年中考数学一轮复习讲与练第2章第3讲 分式方程(考点精析+真题精讲)(2份,原卷版+解析版) 试卷 0 次下载
- 2025年中考数学一轮复习讲与练第2章第3讲 分式方程(题型突破+专题精练)(2份,原卷版+解析版) 试卷 0 次下载
- 2025年中考数学一轮复习讲与练第2章第4讲 一次不等式(组)(考点精析+真题精讲)(2份,原卷版+解析版) 试卷 0 次下载
2025年中考数学一轮复习讲与练第2章第2讲 一元二次方程(题型突破+专题精练)(2份,原卷版+解析版)
展开
这是一份2025年中考数学一轮复习讲与练第2章第2讲 一元二次方程(题型突破+专题精练)(2份,原卷版+解析版),文件包含2025年中考数学一轮复习讲与练第2章第2讲一元二次方程题型突破+专题精练原卷版docx、2025年中考数学一轮复习讲与练第2章第2讲一元二次方程题型突破+专题精练解析版docx等2份试卷配套教学资源,其中试卷共46页, 欢迎下载使用。
【解析】
(1)经整理,得它的一般形式
(a2+2)x2+(a-3)x-a(a+1)=0,
其中,由于对任何实数a都有a2≥0,于是都有a2+2>0,由此可知a2+2≠0,所以可以判定:
对任何实数a,它都是一个一元二次方程.
(2)经整理,得它的一般形式
(m2-1)x2+(2-2m)x+(m3+1)=0,
其中,当m≠1且m≠-1时,有m2-1≠0,它是一个一元二次方程;当m=1时方程不存在,
当m=-1时,方程化为4x=0,它们都不是一元二次方程.
【总结】对于含有参数的一元二次方程,要十分注意二次项系数的取值范围,在作为一元二次方程进行 研究讨论时,必须确定对参数的限制条件.如在第(2)题,对参数m的限定条件是m≠±1.
例如,一个关于x的方程,若整理为(m-4)x2+mx-3=0的形式,仅当m-4≠0,即m≠4时,才是一元二次方程(显然,当m=4时,它只是一个一元一次方程4x-3=0).又如,当我们说:“关于x的一元二次方程(a-1)x2+(2a+1)x+a2-1=0……”时,实际上就给出了条件“a-1≠0”,也就是存在一个条件“a≠1”.由于这个条件没有直接注明,而是隐含在其他的条件之中,所以称它为“隐含条件”.
题型二 解一元二次方程
2.(2023·新疆·统考中考真题)用配方法解一元二次方程,配方后得到的方程是( )
A.B.C.D.
【答案】D
【分析】方程两边同时加上一次项系数一半的平方即计算即可.
【详解】∵,
∴,
∴,
∴,
故选:D.
【点睛】本题考查了配方法,熟练掌握配方法的基本步骤是解题的关键.
3.(2023·内蒙古赤峰·统考中考真题)用配方法解方程时,配方后正确的是( )
A.B.C.D.
【答案】C
【分析】根据配方法,先将常数项移到右边,然后两边同时加上,即可求解.
【详解】解:
移项得,
两边同时加上,即
∴,
故选:C.
【点睛】本题考查了配方法解一元二次方程,熟练掌握配方法是解题的关键.
4.(2023·四川眉山·统考中考真题)已知方程的根为,则的值为____________.
【答案】6
【分析】解方程,将解得的代入即可解答.
【详解】解:,
对左边式子因式分解,可得
解得,,
将,代入,
可得原式,
故答案为:6.
【点睛】本题考查了因式分解法解一元二次方程,熟练掌握计算方法是解题的关键.
5.(2022·四川凉山)解方程:x2-2x-3=0
【答案】
【分析】利用因式分解法解一元二次方程即可得.
【详解】解:,
,
或,
或,
故方程的解为.
【点睛】本题考查了解一元二次方程,熟练掌握解一元二次方程的常用方法(配方法、因式分解法、公式法、换元法等)是解题关键.
题型三 一元二次方程根的判别式
6.(2023·山东滨州·统考中考真题)一元二次方程根的情况为( )
A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能判定
【答案】A
【分析】根据题意,求得,根据一元二次方程根的判别式的意义,即可求解.
【详解】解:∵一元二次方程中,,
∴,
∴一元二次方程有两个不相等的实数根,
故选:A.
【点睛】本题考查了一元二次方程的根的判别式的意义,熟练掌握一元二次方程根的判别式的意义是解题的关键.
7.(2022·浙江温州)若关于x的方程有两个相等的实数根,则c的值是( )
A.36B.C.9D.
【答案】C
【分析】根据判别式的意义得到,然后解关于c的一次方程即可.
【详解】解:∵方程有两个相等的实数根
∴ 解得 故选:C.
【点睛】本题考查了根的判别式:一元二次方程的跟与的关系,关键是分清楚以下三种情况:当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程无实数根.
8.(2023·全国·统考中考真题)一元二次方程根的判别式的值是( )
A.33B.23C.17D.
【答案】C
【分析】直接利用一元二次方程根的判别式求出答案.
【详解】解:∵,,,
∴.
故选:C.
【点睛】此题主要考查了一元二次方程的根的判别式,正确记忆公式是解题关键.
9.(2023·四川·统考中考真题)关于x的一元二次方程根的情况,下列说法中正确的是( )
A.有两个不相等的实数根B.有两个相等的实数根
C.没有实数根D.无法确定
【答案】C
【分析】直接利用一元二次方程根的判别式即可得.
【详解】解:,
其中,,,
∴,
∴方程没有实数根.
故选:C.
【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程,若,则方程有两个不相等的实数根,若,则方程有两个相等的实数根,若,则方程没有实数根.
10.(2023·河南·统考中考真题)关于x的一元二次方程的根的情况是( )
A.有两个不相等的实数根B.有两个相等的实数根
C.只有一个实数根D.没有实数根
【答案】A
【分析】对于,当, 方程有两个不相等的实根,当, 方程有两个相等的实根,, 方程没有实根,根据原理作答即可.
【详解】解:∵,
∴,
所以原方程有两个不相等的实数根,
故选:A.
【点睛】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题关键.
11.(2023·上海·统考中考真题)已知关于x的一元二次方程没有实数根,那么a的取值范围是________.
【答案】
【分析】根据一元二次方程根的判别式可进行求解.
【详解】解:∵关于x的一元二次方程没有实数根,
∴,
解得:;
故答案为:.
【点睛】本题主要考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键.
12.(2020·湖北中考真题)已知关于x的一元二次方程有两个实数根.
(1)求k的取值范围;(2)若,求k的值.
【答案】(1) ;(2)
【分析】(1)根据建立不等式即可求解;(2)先提取公因式对等式变形为,再结合韦达定理求解即可.
【解析】解:(1)由题意可知,,
整理得:,解得:,∴的取值范围是:.故答案为:.
(2)由题意得:,
由韦达定理可知:,,故有:,
整理得:,解得:,
又由(1)中可知,∴的值为.故答案为:.
【点睛】本题考查了一元二次方程判别式、根与系数的关系、韦达定理、一元二次方程的解法等知识点,当>0时,方程有两个不相等的实数根;当=0时,方程有两个相等的实数根;当<0时,方程没有实数根.
13.(2020·广西玉林·中考真题)已知关于x的一元二次方程有两个不相等的实数根.
(1)求k的取值范围;(2)若方程的两个不相等实数根是a,b,求的值.
【答案】(1)k>-1;(2)1
【分析】(1)根据∆>0列不等式求解即可;(2)根据根与系数的关系求出a+b、ab的值,然后代入所给代数式计算即可.
【解析】解:(1)由题意得∆=4+4k>0,∴k>-1;
(2)∵a+b=-2,ab=-k,∴== = =1.
【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)根的判别式与根的关系,以及根与系数的关系,若x1,x2为方程的两个根,则x1,x2与系数的关系式:,.
14.(2020·湖北随州·中考真题)已知关于的一元二次方程.
(1)求证:无论取何值,此方程总有两个不相等的实数根;
(2)若方程有两个实数根,,且,求的值.
【答案】(1)见解析;(2).
【分析】(1)求出△的值即可证明;(2),根据根与系数的关系得到,代入,得到关于m的方程,然后解方程即可.
【解析】(1)证明:依题意可得
故无论m取何值,此方程总有两个不相等的实数根.
(2)由根与系数的关系可得:
由,得,解得.
【点睛】本题考查了利用一元二次方程根的判别式证明根的情况以及一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−,x1x2=.
15.(2022·四川南充)已知关于x的一元二次方程有实数根.
(1)求实数k的取值范围.(2)设方程的两个实数根分别为,若,求k的值.
【答案】(1)k;(2)k=3
【分析】根据一元二次方程有实数根得到32-4(k-2)0,解不等式即可;
(2)根据根与系数的关系得到,将等式左侧展开代入计算即可得到k值.
【解析】 (1)解:∵一元二次方程有实数根.
∴∆0,即32-4(k-2)0,解得k
(2)∵方程的两个实数根分别为,∴,
∵,∴,∴,解得k=3.
【点睛】此题考查了一元二次方程根的判别式,一元二次方程根与系数的关系式,熟练掌握一元二次方程有关知识是解题的关键.
考向四 含参问题
16.(2023·四川眉山·统考中考真题)关于x的一元二次方程有两个不相等的实数根,则m的取值范围是( )
A.B.C.D.
【答案】D
【分析】利用一元二次方程根的判别式求解即可.
【详解】解:∵关于x的一元二次方程有两个不相等的实数根,
∴,
∴,
故选:D.
【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程,若,则方程有两个不相等的实数根,若,则方程有两个相等的实数根,若,则方程没有实数根.
17.(2023·山东聊城·统考中考真题)若一元二次方程有实数解,则m的取值范围是( )
A.B.C.且D.且
【答案】D
【分析】由于关于的一元二次方程有实数根,根据一元二次方程根与系数的关系可知,且,据此列不等式求解即可.
【详解】解:由题意得,,且,
解得,,且.
故选:D.
【点睛】本题考查了一元二次方程的根的判别式与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当时,一元二次方程有两个不相等的实数根;当时,一元二次方程有两个相等的实数根;当时,一元二次方程没有实数根.
18.(2023·湖南常德·统考中考真题)若关于的一元二次方程有两个不相等的实数根,则的取值范围是_________.
【答案】
【分析】若一元二次方程有两个不相等的实数根,则根的判别式,建立关于k的不等式,解不等式即可得出答案.
【详解】解:∵关于x的方程有两个不相等的实数根,
∴,
解得.
故答案为:.
【点睛】此题考查了根的判别式.一元二次方程的根与有如下关系:(1)⇔方程有两个不相等的实数根;(2)⇔方程有两个相等的实数根;(3)⇔方程没有实数根.
19.(2022秋·河南新乡·九年级统考期中)关于x的一元二次方程有两个不相等的实数根,则m的取值范围是_____________.
【答案】m>-1
【分析】根据有两个不相等的实数根得到>0,解不等式即可.
【详解】解:根据题意,得>0,
解得 m>-1;
故答案为m>-1.
【点睛】本题考查一元二次方程的判别式,解决问题的关键是掌握判别式和方程根之间的关系:当>0时,原方程有两个不相等的实数根,当=0时,原方程有两个相等的实数根,当<0时,原方程无实数根.
20.(2023·四川宜宾·统考中考真题)若关于x的方程两根的倒数和为1,则m的值为___________.
【答案】2
【分析】根据根与系数的关系即可求出答案.
【详解】解:设方程的两个根分别为a,b,
由题意得:,,
∴,
∴,解得:,
经检验:是分式方程的解,
检验:,
∴符合题意,
∴.
故答案为:2.
【点睛】本题考查了一元二次方程根与系数的关系,掌握一元二次方程根与系数的关系是解题的关键.
21.(2023·山东枣庄·统考中考真题)若是关x的方程的解,则的值为___________.
【答案】2019
【分析】将代入方程,得到,利用整体思想代入求值即可.
【详解】解:∵是关x的方程的解,
∴,即:,
∴
;
故答案为:2019.
【点睛】本题考查方程的解,代数式求值.熟练掌握方程的解是使等式成立的未知数的值,是解题的关键.
22.(2022秋·北京东城·九年级景山学校校考阶段练习)关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是______.
【答案】k<1.
【分析】由方程有两个不等实数根可得出关于k的一元一次不等式,解不等式即可得出结论.
【详解】∵关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,
∴△=,
解得:,
故答案为:.
【点睛】本题考查了根的判别式以及解一元一次不等式,解题的关键是得出关于k的一元一次不等式.熟知“在一元二次方程中,若方程有两个不相等的实数根,则△=”是解答本题的关键.
23.(2023·湖南岳阳·统考中考真题)已知关于的一元二次方程有两个不相等的实数根,且,则实数_________.
【答案】3
【分析】利用一元二次方程有两个不相等的实数根求出m的取值范围,由根与系数关系得到,代入,解得的值,根据求得的m的取值范围,确定m的值即可.
【详解】解:∵关于的一元二次方程有两个不相等的实数根,
∴,
解得,
∵,,
∴,
解得(不合题意,舍去),
∴
故答案为:3.
【点睛】此题考查一元二次方程根的判别式和一元二次方程根与系数关系,熟练掌握根的判别式和根与系数关系的内容是解题的关键.
24.(2023·湖北荆州·统考中考真题)已知关于的一元二次方程有两个不相等的实数根.
(1)求的取值范围;
(2)当时,用配方法解方程.
【答案】(1)且;(2),
【分析】(1)根据题意,可得,注意一元二次方程的系数问题,即可解答,
(2)将代入,利用配方法解方程即可.
【详解】(1)解:依题意得:,
解得且;
(2)解:当时,原方程变为:,
则有:,
,
,
方程的根为,.
【点睛】本题考查了根据根的情况判断参数,用配方法解一元二次方程,熟练利用配方法解一元二次方程是解题的关键.
题型五 根与系数关系
25.(2023·山东·统考中考真题)一元二次方程的两根为,则的值为( )
A.B.C.3D.
【答案】C
【分析】先求得,,再将变形,代入与的值求解即可.
【详解】解:∵一元二次方程的两根为,
∴,
∴
.
故选:C.
【点睛】本题主要考查了一元二次方程根与系数的关系,牢记,是解决本题的关键.
26.(2023·四川泸州·统考中考真题)关于的一元二次方程的根的情况是( )
A.没有实数根B.有两个相等的实数根
C.有两个不相等的实数根D.实数根的个数与实数的取值有关
【答案】C
【分析】根据一元二次方程根的判别式求出,即可得出答案.
【详解】解:∵,
∴关于的一元二次方程有两个不相等的实数根,故C正确.
故选:C.
【点睛】本题考查了根的判别式,一元二次方程的根与有如下关系:当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程无实数根.
27.(2023·四川乐山·统考中考真题)若关于x的一元二次方程两根为,且,则m的值为( )
A.4B.8C.12D.16
【答案】C
【分析】根据一元二次方程根与系数的关系得出,然后即可确定两个根,再由根与系数的关系求解即可.
【详解】解:∵关于x的一元二次方程两根为,
∴,
∵,
∴,
∴,
故选:C.
【点睛】题目主要考查一元二次方程根与系数的关系,熟练掌握此关系是解题关键.
28.(2023·天津·统考中考真题)若是方程的两个根,则( )
A.B.C.D.
【答案】A
【分析】根据一元二次方程的根与系数的关系即可得.
【详解】解:方程中的,
是方程的两个根,
,,
故选:A.
【点睛】本题考查了一元二次方程的根与系数的关系,熟练掌握一元二次方程的根与系数的关系是解题关键.
29.(2023·湖北宜昌·统考中考真题)已知、是方程的两根,则代数式的值为_________.
【答案】
【分析】根据、是一元二次方程的两个根,则有,求解即可.
【详解】解:由题意得
,
原式.
故答案:.
【点睛】本题考查了韦达定理,掌握定理是解题的关键.
30.(2023·四川遂宁·统考中考真题)若a、b是一元二次方程的两个实数根,则代数式的值为_________.
【答案】2
【分析】根据根与系数的关系得到,由此即可得到答案.
【详解】解:∵a、b是一元二次方程的两个实数根,
∴,
∴,
故答案为:2.
【点睛】本题主要考查了一元二次方程根与系数的关系,对于一元二次方程,若是该方程的两个实数根,则.
31.(2023·四川内江·统考中考真题)已知a、b是方程的两根,则___________.
【答案】
【分析】利用一元二次方程的解的定义和根与系数的关系,可得,从而得到,然后代入,即可求解.
【详解】解:∵a,b是方程的两根,
∴,
∴,
∴
.
故答案为:.
【点睛】本题主要考查了一元二次方程的解的定义和根与系数的关系,熟练掌握一元二次方程的解的定义和根与系数的关系是解题的关键.
32.(2023·湖北黄冈·统考中考真题)已知一元二次方程的两个实数根为,若,则实数_____________.
【答案】
【分析】根据一元二次方程的根与系数的关系,得出,代入已知等式,即可求解.
【详解】解:∵一元二次方程的两个实数根为,
∴
∵,
∴,
解得:,
故答案为:.
【点睛】本题考查了一元二次方程的根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题的关键.
33.(2023·四川南充·统考中考真题)已知关于x的一元二次方程
(1)求证:无论m为何值,方程总有实数根;
(2)若,是方程的两个实数根,且,求m的值.
【答案】(1)见解析;(2)或
【分析】(1)根据一元二次方程根的情况与判别式的关系,只要判定即可得到答案;
(2)根据一元二次方程根与系数的关系得到,,整体代入得到求解即可得到答案.
【详解】(1)证明:关于的一元二次方程,
∴,,,
∴,
∵,即,
∴不论为何值,方程总有实数根;
(2)解:∵,是关于x的一元二次方程的两个实数根,
∴,,
∵,
∴,
∴,整理,得,解得,,
∴m的值为或.
【点睛】本题考查一元二次方程根的情况与判别式关系,一元二次方程根与系数的关系,熟记一元二次方程判别式与方程根的情况联系、一元二次方程根与系数的关系是解决问题的关键.
34.(2019·湖北黄石·中考真题)已知关于的一元二次方程有实数根.
(1)求的取值范围.(2)若该方程的两个实数根为、,且,求的值.
【答案】(1).(2).
【分析】(1)根据方程的系数结合根的判别式△≥0,即可得出关于m的一元一次不等式,解之即可得出m的取值范围;(2)由根与系数的关系可得出x1+x2=6,x1x2=4m+1,结合|x1-x2|=4可得出关于m的一元一次方程,解之即可得出m的值.
【解析】(1)∵关于x的一元二次方程x2-6x+(4m+1)=0有实数根,
∴△=(-6)2-4×1×(4m+1)≥0,解得:m≤2;
(2)∵方程x2-6x+(4m+1)=0的两个实数根为x1、x2,∴x1+x2=6,x1x2=4m+1,
∴(x1-x2)2=(x1+x2)2-4x1x2=42,即32-16m=16,解得:m=1.
【点睛】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△≥0时,方程有实数根”;(2)利用根与系数的关系结合|x1-x2|=4,找出关于m的一元一次方程.
35.(2019·四川南充·中考真题)已知关于的一元二次方程有实数根.
(1)求实数m的取值范围;(2)当m=2时,方程的根为,求代数式的值.
【答案】(1);(2)1.
【分析】(1)根据△≥0,解不等式即可;
(2)将m=2代入原方程可得:x2+3x+1=0,计算两根和与两根积,化简所求式子,可得结论.
【解析】(1)△=
∵原方程有实根,∴△=解得
(2)当m=2时,方程为x2+3x+1=0,∴x1+x2=-3,x1x2=1,
∵方程的根为x1,x2,∴x12+3x1+1=0,x22+3x2+1=0,
∴(x12+2x1)(x22+4x2+2)=(x12+2x1+x1-x1)(x22+3x2+x2+2)=(-1-x1)(-1+x2+2)
=(-1-x1)(x2+1)=-x2-x1x2-1-x1=-x2-x1-2=3-2=1.
【点睛】本题考查了根与系数的关系以及一元二次方程的解,根的判别式等知识,牢记“两根之和等于,两根之积等于”是解题的关键.
题型六 一元二次方程在实际问题中的应用
36.(2023·广西·统考中考真题)据国家统计局发布的《2022年国民经济和社会发展统计公报》显示,2020年和2022年全国居民人均可支配收入分别为3.2万元和3.7万元.设2020年至2022年全国居民人均可支配收入的年平均增长率为x,依题意可列方程为( )
A.B.
C.D.
【答案】B
【分析】设2020年至2022年全国居民人均可支配收入的年平均增长率为x,根据题意列出一元二次方程即可.
【详解】设2020年至2022年全国居民人均可支配收入的年平均增长率为x,
根据题意得,.
故选:B.
【点睛】本题考查了一元二次方程的应用,根据题意列出一元二次方程是解题的关键.
37.(2022·新疆)临近春节的三个月,某干果店迎来了销售旺季,第一个月的销售额为8万元,第三个月的销售额为11.52万元,设这两个月销售额的月平均增长率为x,则根据题意,可列方程为( )
A.B.C.D.
【答案】C
【分析】设这两个月销售额的月平均增长率为x,则第二个月的销售额是万元,第三个月的销售额为万元,即可得.
【详解】解:设这两个月销售额的月平均增长率为x,则第二个月的销售额是万元,第三个月的销售额为万元,∴故选C.
【点睛】本题考查了由实际问题抽象出一元二次方程,解题的关键是能够求出第二个月的销售额和第三个月的销售额.
38.(2023·黑龙江·统考中考真题)如图,在长为,宽为的矩形空地上修筑四条宽度相等的小路,若余下的部分全部种上花卉,且花圃的面积是,则小路的宽是( )
A.B.C.或D.
【答案】A
【分析】设小路宽为,则种植花草部分的面积等于长为,宽为的矩形的面积,根据花草的种植面积为,即可得出关于x的一元二次方程,解之取其符合题意的值即可得出结论.
【详解】解:设小路宽为,则种植花草部分的面积等于长为,宽为的矩形的面积,
依题意得:
解得:,(不合题意,舍去),
∴小路宽为.
故选:A.
【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
39.(2023·重庆·统考中考真题)某新建工业园区今年六月份提供就业岗位个,并按计划逐月增长,预计八月份将提供岗位个.设七、八两个月提供就业岗位数量的月平均增长率为,根据题意,可列方程为___________.
【答案】
【分析】设七、八两个月提供就业岗位数量的月平均增长率为,根据题意列出一元二次方程,即可求解.
【详解】解:设七、八两个月提供就业岗位数量的月平均增长率为,根据题意得,
,
故答案为:.
【点睛】本题考查了一元二次方程的应用,增长率问题,根据题意列出方程是解题的关键.
40.(2023·湖南·统考中考真题)某校截止到年底,校园绿化面积为平方米.为美化环境,该校计划年底绿化面积达到平方米.利用方程想想,设这两年绿化面积的年平均增长率为,则依题意列方程为__________.
【答案】
【分析】设这两年绿化面积的年平均增长率为,依题意列出一元二次方程即可求解.
【详解】解:设这两年绿化面积的年平均增长率为,则依题意列方程为,
故答案为:.
【点睛】本题考查了一元二次方程的应用,根据题意列出一元二次方程是解题的关键.
41.如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm.点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.
(1)如果P,Q分别从A,B同时出发,那么几秒后,△PBQ的面积等于6 cm2?
(2)在(1)中,△PQB的面积能否等于8 cm2?说明理由.
【答案】(1)2或3秒;(2)不能.
【解析】(1)设经过x秒以后△PBQ的面积为6 cm2,
则×(5﹣x)×2x=6,
整理得:x2﹣5x+6=0,
解得:x=2或x=3.
答:2或3秒后△PBQ的面积等于6 cm2 .
(2)设经过x秒以后△PBQ面积为8 cm2,则
×(5﹣x)×2x=8,
整理得:x2﹣5x+8=0,
因为△=25﹣32=﹣7<0,
所以此方程无解,
故△PQB的面积不能等于8 cm2.
【点睛】此题主要考查了一元二次方程的应用,找到关键描述语“△PBQ的面积等于6 cm2”,得出等量关系是解决问题的关键.
(1)设经过x秒钟,△PBQ的面积等于6 cm2,根据点P从A点开始沿AB边向点B以1 cm/s的速度移动,点Q从B点开始沿BC边向点C以2 cm/s的速度移动,表示出BP和BQ的长可列方程求解.
(2)通过判定得到的方程的根的判别式即可判定能否达到8 cm2.
42.(2023·辽宁大连·统考中考真题)为了让学生养成热爱图书的习惯,某学校抽出一部分资金用于购买书籍.已知2020年该学校用于购买图书的费用为5000元,2022年用于购买图书的费用是7200元,求年买书资金的平均增长率.
【答案】
【分析】设年买书资金的平均增长率为,根据2022年买书资金2020年买书资金建立方程,解方程即可得.
【详解】解:设年买书资金的平均增长率为,
由题意得:,
解得或(不符合题意,舍去),
答:年买书资金的平均增长率为.
【点睛】本题考查了一元二次方程的应用,找准等量关系,正确建立方程是解题关键.
43.(2022·四川眉山)建设美丽城市,改造老旧小区.某市2019年投入资金1000万元,2021年投入资金1440万元,现假定每年投入资金的增长率相同.
(1)求该市改造老旧小区投入资金的年平均增长率;
(2)2021年老旧小区改造的平均费用为每个80万元.2022年为提高老旧小区品质,每个小区改造费用增加15%.如果投入资金年增长率保持不变,求该市在2022年最多可以改造多少个老旧小区?
【答案】(1)20% (2)18个
【分析】(1)先设该市改造老旧小区投入资金的年平均增长率为,根据2019年投入资金2021年投入的总资金,列出方程求解即可;
(2)由(1)得出的资金年增长率求出2022年的投入资金,然后2022年改造老旧小区的总费用要小于等于2022年投入资金,列出不等式求解即可.
【解析】(1)解:设该市改造老旧小区投入资金的年平均增长率为,
根据题意得:,解这个方程得,,,
经检验,符合本题要求.
答:该市改造老旧小区投入资金的年平均增长率为20%.
(2)设该市在2022年可以改造个老旧小区,
由题意得:,解得.
∵为正整数,∴最多可以改造18个小区.
答:该市在2022年最多可以改造18个老旧小区.
【点睛】此题考查了一元二次方程的应用,不等式的应用,解决此题的关键是找到相应的等量关系和相应的不等关系,列出正确的方程和不等式.
44.(2023·湖南郴州·统考中考真题)随旅游旺季的到来,某景区游客人数逐月增加,2月份游客人数为1.6万人,4月份游客人数为2.5万人.
(1)求这两个月中该景区游客人数的月平均增长率;
(2)预计5月份该景区游客人数会继续增长,但增长率不会超过前两个月的月平均增长率.已知该景区5月1日至5月21日已接待游客2.125万人,则5月份后10天日均接待游客人数最多是多少万人?
【答案】(1)这两个月中该景区游客人数的月平均增长率为;(2)5月份后10天日均接待游客人数最多是1万人
【分析】(1)设这两个月中该景区游客人数的月平均增长率为,根据题意,列出一元二次方程,进行求解即可;
(2)设5月份后10天日均接待游客人数是y万人,根据题意,列出不等式进行计算即可.
【详解】(1)解:设这两个月中该景区游客人数的月平均增长率为,由题意,得:
,
解得:(负值已舍掉);
答:这两个月中该景区游客人数的月平均增长率为;
(2)设5月份后10天日均接待游客人数是y万人,由题意,得:
,
解得:;
∴5月份后10天日均接待游客人数最多是1万人.
【点睛】本题考查一元二次方程和一元一次不等式的实际应用,找准等量关系,正确的列出方程和不等式,是解题的关键.
45.(2019·辽宁铁岭·中考真题)小李在景区销售一种旅游纪念品,已知每件进价为6元,当销售单价定为8元时,每天可以销售200件.市场调查反映:销售单价每提高1元,日销量将会减少10件,物价部门规定:销售单价不能超过12元,设该纪念品的销售单价为x(元),日销量为y(件),日销售利润为w(元).
(1)求y与x的函数关系式.(2)要使日销售利润为720元,销售单价应定为多少元?(3)求日销售利润w(元)与销售单价x(元)的函数关系式,当x为何值时,日销售利润最大,并求出最大利润.
【答案】(1);(2)10元;(3)x为12时,日销售利润最大,最大利润960元
【分析】(1)根据题意得到函数解析式;(2)根据题意列方程,解方程即可得到结论;
(3)根据题意得到,根据二次函数的性质即可得到结论.
【解析】解:(1)根据题意得,,
故y与x的函数关系式为;
(2)根据题意得,,解得:,(不合题意舍去),
答:要使日销售利润为720元,销售单价应定为10元;
(3)根据题意得,,
,∴当时,w随x的增大而增大,当时,,
答:当x为12时,日销售利润最大,最大利润960元.
【点睛】此题考查了一元二次方程和二次函数的运用,利用总利润=单个利润×销售数量建立函数关系式,进一步利用性质的解决问题,解答时求出二次函数的解析式是关键.
46.(2019·山东东营·中考真题)为加快新旧动能转换,提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出,根据市场调查:这种电子产品销售单价定为元时,每天可售出个;若销售单价每降低元,每天可多售出个.已知每个电子产品的固定成本为元,问这种电子产品降价后的销售单价为多少元时,公司每天可获利元?
【答案】销售单价为元时,公司每天可获利元
【分析】根据题意设降价后的销售单价为元,由题意得到,则可得到答案.
【解析】解:设降价后的销售单价为元,则降价后每天可售出个,
依题意,得:,
整理,得:,解得:.,符合题意.
答:这种电子产品降价后的销售单价为元时,公司每天可获利元.
【点睛】本题考查二次函数的实际应用,解题的关键是熟练掌握二次函数的实际应用.
47.(2020·辽宁丹东·中考真题)某服装批发市场销售一种衬衫,衬衫每件进货价为50元,规定每件售价不低于进货价,经市场调查,每月的销售量(件)与每件的售价(元)满足一次函数关系,部分数据如下表:
(1)求出与之间的函数表达式;(不需要求自变量的取值范围)
(2)该批发市场每月想从这种衬衫销售中获利24000元,又想尽量给客户实惠,该如何给这种衬衫定价?
(3)物价部门规定,该衬衫的每件利润不允许高于进货价的30%,设这种衬衫每月的总利润为(元),那么售价定为多少元可获得最大利润?最大利润是多少?
【答案】(1)与之间的函数表达式为;(2)这种衬衫定价为每件70元;(3)价定为65元可获得最大利润,最大利润是19500元.
【分析】(1)根据题意可以设出y与x之间的函数表达式,然后根据表格中的数据即可求得y与x之间的函数表达式;(2)根据“总利润=每件商品的利润×销售量”列出方程并求解,最后根据尽量给客户实惠,对方程的解进行取舍即可;(3)求出w的函数解析式,将其化为顶点式,然后求出定价的取值,即可得到售价为多少万元时获得最大利润,最大利润是多少.
【解析】解:(1)设y与x之间的函数解析式为y=kx+b(k≠0),
把x=60,y=1400和x=65,y=1300代入解析式得,, 解得,,
∴与之间的函数表达式为;
(2)设该种衬衫售价为x元,根据题意得,(x-50)(-20x+2600)=24000解得,,,
∵批发商场想尽量给客户实惠,∴,故这种衬衫定价为每件70元;
(3)设售价定为x元,则有:
=
∵ ∴
∵k=-20<0,∴w有最大值,即当x=65时,w的最大值为-20(65-90)2+32000=19500(元).
所以,售价定为65元可获得最大利润,最大利润是19500元.
【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用二次函数的性质和二次函数的顶点式解答.
48.(2020·内蒙古赤峰·中考真题)阅读理解:
材料一:若三个非零实数x,y,z满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实教x,y,z构成“和谐三数组”.
材料二:若关于x的一元二次方程ax2+bx +c= 0(a≠0)的两根分别为,,则有,.
问题解决:
(1)请你写出三个能构成“和谐三数组”的实数 ;
(2)若,是关于x的方程ax2+bx +c= 0 (a,b,c均不为0)的两根,是关于x的方程bx+c=0(b,c均不为0)的解.求证:x1 ,x2,x3可以构成“和谐三数组”;
(3)若A(m,y1) ,B(m + 1,y2) ,C(m+3,y3)三个点均在反比例函数的图象上,且三点的纵坐标恰好构成“和谐三数组”,求实数m的值.
【答案】(1),2,3(答案不唯一);(2)见解析;(3)m=﹣4或﹣2或2.
【分析】(1)根据“和谐三数组”的定义可以先写出后2个数,取倒数求和后即可写出第一个数,进而可得答案;(2)根据一元二次方程根与系数的关系求出,然后再求出,只要满足=即可;(3)先求出三点的纵坐标y1,y2,y3,然后由“和谐三数组”可得y1,y2,y3之间的关系,进而可得关于m的方程,解方程即得结果.
【解析】解:(1)∵,∴,2,3是“和谐三数组”;故答案为:,2,3(答案不唯一);
(2)证明:∵,是关于x的方程ax2+bx +c= 0 (a,b,c均不为0)的两根,
∴,,∴,
∵是关于x的方程bx+c=0(b,c均不为0)的解,∴,∴,∴=,
∴x1 ,x2,x3可以构成“和谐三数组”;
(3)∵A(m,y1) ,B(m + 1,y2) ,C(m+3,y3)三个点均在反比例函数的图象上,
∴,,,
∵三点的纵坐标y1,y2,y3恰好构成“和谐三数组”,
∴或或,
即或或,解得:m=﹣4或﹣2或2.
【点睛】本题是新定义试题,主要考查了一元二次方程根与系数的关系、反比例函数图象上点的坐标特征和对新知“和谐三数组”的理解与运用,正确理解题意、熟练掌握一元二次方程根与系数的关系与反比例函数的图象与性质是解题的关键.
49.(2022·四川凉山)阅读材料:
材料1:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2,则x1+x2=,x1x2=
材料2:已知一元二次方程x2-x-1=0的两个实数根分别为m,n,求m2n+mn2的值.
解:∵一元二次方程x2-x-1=0的两个实数根分别为m,n,
∴m+n=1,mn=-1,
则m2n+mn2=mn(m+n)=-1×1=-1
根据上述材料,结合你所学的知识,完成下列问题:
(1)材料理解:一元二次方程2x2-3x-1=0的两个根为x1,x2,则x1+x2= ;x1x2= .
(2)类比应用:已知一元二次方程2x2-3x-1=0的两根分别为m、n,求的值.
(3)思维拓展:已知实数s、t满足2s2-3s-1=0,2t2-3t-1=0,且s≠t,求的值.
【答案】(1);(2)(3)或
【分析】(1)根据一元二次方程根与系数的关系直接进行计算即可;(2)根据根与系数的关系先求出,,然后将进行变形求解即可;(3)根据根与系数的关系先求出,,然后求出s-t的值,然后将进行变形求解即可.
【解析】 (1)解:∵一元二次方程2x2-3x-1=0的两个根为x1,x2,
∴,.故答案为:;.
(2)∵一元二次方程2x2-3x-1=0的两根分别为m、n,
∴,,
∴
(3)∵实数s、t满足2s2-3s-1=0,2t2-3t-1=0,
∴s、t可以看作方程2x2-3x-1=0的两个根,
∴,,
∵
∴或,当时,,
当时,,综上分析可知,的值为或.
【点睛】本题主要考查了一元二次方程根与系数的关系,完全平方公式的变形计算,根据根与系数的关系求出或,是解答本题的关键.
50.(2022·山西·中考真题)阅读与思考
下面是小宇同学的数学小论文,请仔细阅读并完成相应的任务
用函数观点认识一元二次方程根的情况
我们知道,一元二次方程的根就是相应的二次函数的图象(称为抛物线)与x轴交点的横坐标.抛物线与x轴的交点有三种情况:有两个交点、有一个交点、无交点.与此相对应,一元二次方程的根也有三种情况:有两个不相等的实数根、有两个相等的实数根、无实数根.因此可用抛物线与x轴的交点个数确定一元二次方程根的情况
下面根据抛物线的顶点坐标(,)和一元二次方程根的判别式,分别分和两种情况进行分析:
(1)时,抛物线开口向上.
①当时,有.∵,∴顶点纵坐标.
∴顶点在x轴的下方,抛物线与x轴有两个交点(如图1).
②当时,有.∵,∴顶点纵坐标.
∴顶点在x轴上,抛物线与x轴有一个交点(如图2).
∴一元二次方程有两个相等的实数根.
③当时,
……
(2)时,抛物线开口向下.
……
任务:
(1)上面小论文中的分析过程,主要运用的数学思想是 (从下面选项中选出两个即可);
A.数形结合
B.统计思想
C.分类讨论.
D.转化思想
(2)请参照小论文中当时①②的分析过程,写出③中当时,一元二次方程根的情况的分析过程,并画出相应的示意图;
(3)实际上,除一元二次方程外,初中数学还有一些知识也可以用函数观点来认识,例如:可用函数观点来认识一元一次方程的解.请你再举出一例为
【答案】(1)AC(或AD或CD)
(2)分析见解析;作图见解析
(3)答案见解析
【解析】
【分析】
(1)解一元二次方程的解转化为抛物线与x轴交点的横坐标;还体现了分类讨论思想;
(2)依照例题,画出图形,数形结合,可以解答;
(3)结合所学知识,找到用转化思想或数形结合或分类讨论思想解决问题的一种情况即可.
(1)
解:上面解一元二次方程的过程中体现了转化思想、数形结合、分类讨论思想,
故答案为:AC(或AD或CD);
(2)
解:a>0时,抛物线开口向上.
当△=b2−4ac0﹒
∵a>0,
∴顶点纵坐标﹒
∴顶点在x轴的上方,抛物线与x轴无交点(如图):
∴一元二次方程ax2+bx+c=0(a≠0)无实数根.
(3)
解:可用函数观点认识二元一次方程组的解.(答案不唯一.又如:可用函数观点认识一元一次不等式的解集,等)
【点睛】
本题考查的二次函数与一元二次方程的关系,根据转化思想将一元二次方程的解的问题转化成抛物线与x轴交点的横坐标的问题,再根据数形结合的思想用抛物线与x轴的交点个数确定一元二次方程根的情况是本题的关键.
售价(元/件)
60
65
70
销售量(件)
1400
1300
1200
相关试卷
这是一份2025年中考数学一轮复习讲与练第3章第8讲 抛物线与几何综合题(题型突破+专题精练)(2份,原卷版+解析版),文件包含2025年中考数学一轮复习讲与练第3章第8讲抛物线与几何综合题题型突破+专题精练原卷版docx、2025年中考数学一轮复习讲与练第3章第8讲抛物线与几何综合题题型突破+专题精练解析版docx等2份试卷配套教学资源,其中试卷共75页, 欢迎下载使用。
这是一份2025年中考数学一轮复习讲与练第3章第5讲 反比例函数(题型突破+专题精练)(2份,原卷版+解析版),文件包含2025年中考数学一轮复习讲与练第3章第5讲反比例函数题型突破+专题精练原卷版docx、2025年中考数学一轮复习讲与练第3章第5讲反比例函数题型突破+专题精练解析版docx等2份试卷配套教学资源,其中试卷共87页, 欢迎下载使用。
这是一份2025年中考数学一轮复习讲与练第2章第4讲 一次不等式(组)(题型突破+专题精练)(2份,原卷版+解析版),文件包含2025年中考数学一轮复习讲与练第2章第4讲一次不等式组题型突破+专题精练原卷版docx、2025年中考数学一轮复习讲与练第2章第4讲一次不等式组题型突破+专题精练解析版docx等2份试卷配套教学资源,其中试卷共45页, 欢迎下载使用。