所属成套资源:中考数学二轮复习题型突破 专题训练(2份,原卷版+教师版)
- 中考数学二轮复习题型突破练习题型9 二次函数综合题 类型5 二次函数与三角形全等、相似有关的问题(2份,原卷版+教师版) 试卷 0 次下载
- 中考数学二轮复习题型突破练习题型9 二次函数综合题 类型6 二次函数与等腰三角形有关的问题(2份,原卷版+教师版) 试卷 0 次下载
- 中考数学二轮复习题型突破练习题型9 二次函数综合题 类型9 二次函数与菱形有关的问题(专题训练)(2份,原卷版+教师版) 试卷 0 次下载
- 中考数学二轮复习题型突破练习题型11 综合探究题 类型1 非动态探究题(专题训练)(2份,原卷版+教师版) 试卷 0 次下载
- 中考数学二轮复习题型突破练习题型11 综合探究题 类型4 与旋转有关的探究题(专题训练)(2份,原卷版+教师版) 试卷 0 次下载
中考数学二轮复习题型突破练习题型9 二次函数综合题 类型11 二次函数与正方形有关的问题(专题训练)(2份,原卷版+教师版)
展开
这是一份中考数学二轮复习题型突破练习题型9 二次函数综合题 类型11 二次函数与正方形有关的问题(专题训练)(2份,原卷版+教师版),文件包含中考数学二轮复习题型突破练习题型9二次函数综合题类型11二次函数与正方形有关的问题专题训练教师版docx、中考数学二轮复习题型突破练习题型9二次函数综合题类型11二次函数与正方形有关的问题专题训练学生版docx等2份试卷配套教学资源,其中试卷共58页, 欢迎下载使用。
(1)求抛物线和一次函数的解析式.
(2)点,为平面内两点,若以、、、为顶点的四边形是正方形,且点在点的左侧.这样的,两点是否存在?如果存在,请直接写出所有满足条件的点的坐标:如果不存在,请说明理由.
(3)将抛物线的图象向右平移个单位长度得到抛物线,此抛物线的图象与轴交于,两点(点在点左侧).点是抛物线上的一个动点且在直线下方.已知点的横坐标为.过点作于点.求为何值时,有最大值,最大值是多少?
2.(2023·江苏连云港·统考中考真题)如图,在平面直角坐标系中,抛物线的顶点为.直线过点,且平行于轴,与抛物线交于两点(在的右侧).将抛物线沿直线翻折得到抛物线,抛物线交轴于点,顶点为.
(1)当时,求点的坐标;
(2)连接,若为直角三角形,求此时所对应的函数表达式;
(3)在(2)的条件下,若的面积为两点分别在边上运动,且,以为一边作正方形,连接,写出长度的最小值,并简要说明理由.
3.(2023·江苏扬州·统考中考真题)在平面直角坐标系中,已知点A在y轴正半轴上.
(1)如果四个点中恰有三个点在二次函数(a为常数,且)的图象上.
①________;
②如图1,已知菱形的顶点B、C、D在该二次函数的图象上,且轴,求菱形的边长;
③如图2,已知正方形的顶点B、D在该二次函数的图象上,点B、D在y轴的同侧,且点B在点D的左侧,设点B、D的横坐标分别为m、n,试探究是否为定值.如果是,求出这个值;如果不是,请说明理由.
(2)已知正方形的顶点B、D在二次函数(a为常数,且)的图象上,点B在点D的左侧,设点B、D的横坐标分别为m、n,直接写出m、n满足的等量关系式.
4.(2023·江西·统考中考真题)综合与实践
问题提出:某兴趣小组开展综合实践活动:在中,,D为上一点,,动点P以每秒1个单位的速度从C点出发,在三角形边上沿匀速运动,到达点A时停止,以为边作正方形设点P的运动时间为,正方形的而积为S,探究S与t的关系
(1)初步感知:如图1,当点P由点C运动到点B时,
①当时,_______.
②S关于t的函数解析式为_______.
(2)当点P由点B运动到点A时,经探究发现S是关于t的二次函数,并绘制成如图2所示的图象请根据图象信息,求S关于t的函数解析式及线段的长.
(3)延伸探究:若存在3个时刻()对应的正方形的面积均相等.
①_______;
②当时,求正方形的面积.
5.(2023·湖南永州·统考中考真题)如图1,抛物线(,,为常数)经过点,顶点坐标为,点为抛物线上的动点,轴于H,且.
(1)求抛物线的表达式;
(2)如图1,直线交于点,求的最大值;
(3)如图2,四边形为正方形,交轴于点,交的延长线于,且,求点的横坐标.
6.(2022·浙江湖州)如图1,已知在平面直角坐标系xOy中,四边形OABC是边长为3的正方形,其中顶点A,C分别在x轴的正半轴和y轴的正半轴上,抛物线经过A,C两点,与x轴交于另一个点D.
(1)①求点A,B,C的坐标;
②求b,c的值.
(2)若点P是边BC上的一个动点,连结AP,过点P作PM⊥AP,交y轴于点M(如图2所示).当点P在BC上运动时,点M也随之运动.设BP=m,CM=n,试用含m的代数式表示n,并求出n的最大值.
7.(2023·江苏苏州·统考中考真题)如图,二次函数的图像与轴分别交于点(点A在点的左侧),直线是对称轴.点在函数图像上,其横坐标大于4,连接,过点作,垂足为,以点为圆心,作半径为的圆,与相切,切点为.
(1)求点的坐标;
(2)若以的切线长为边长的正方形的面积与的面积相等,且不经过点,求长的取值范围.
8.(2022·山东泰安)若二次函数的图象经过点,,其对称轴为直线,与x轴的另一交点为C.
(1)求二次函数的表达式;(2)若点M在直线上,且在第四象限,过点M作轴于点N.
①若点N在线段上,且,求点M的坐标;
②以为对角线作正方形(点P在右侧),当点P在抛物线上时,求点M的坐标.
9.如图,在平面直角坐标系中,抛物线与轴正半轴交于点,且点的坐标为,过点作垂直于轴的直线.是该抛物线上的任意一点,其横坐标为,过点作于点;是直线上的一点,其纵坐标为,以,为边作矩形.
(1)求的值.
(2)当点与点重合时,求的值.
(3)当矩形是正方形,且抛物线的顶点在该正方形内部时,求的值.
(4)当抛物线在矩形内的部分所对应的函数值随的增大而减小时,直接写出的取值范围.
10.如图,抛物线与x轴交于点和点,与y轴交于点C,顶点为D,连接与抛物线的对称轴l交于点E.
(1)求抛物线的表达式;
(2)点P是第一象限内抛物线上的动点,连接,当时,求点P的坐标;
(3)点N是对称轴l右侧抛物线上的动点,在射线上是否存在点M,使得以点M,N,E为顶点的三角形与相似?若存在,求点M的坐标;若不存在,请说明理由.
11.如图,在平面直角坐标系中,抛物线y=-23x2+bx+c,经过A(0,﹣4),B(x1,0),C(x2,0)三点,且|x2-x1|=5.
(1)求b,c的值;
(2)在抛物线上求一点D,使得四边形BDCE是以BC为对角线的菱形;
(3)在抛物线上是否存在一点P,使得四边形BPOH是以OB为对角线的菱形?若存在,求出点P的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由.
12.如图,顶点为的抛物线与轴交于,两点,与轴交于点.
(1)求这条抛物线对应的函数表达式;
(2)问在轴上是否存在一点,使得为直角三角形?若存在,求出点的坐标;若不存在,说明理由.
(3)若在第一象限的抛物线下方有一动点,满足,过作轴于点,设的内心为,试求的最小值.
13.如图,在平面直角坐标系中,正方形OABC的边长为4,边OA,OC分别在x轴,y轴的正半轴上,把正方形OABC的内部及边上,横、纵坐标均为整数的点称为好点.点P为抛物线的顶点.
(1)当时,求该抛物线下方(包括边界)的好点个数.
(2)当时,求该抛物线上的好点坐标.
(3)若点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点,求m的取值范围.
14.如图,矩形OABC的两边在坐标轴上,点A的坐标为(10,0),抛物线y=ax2+bx+4过点B,C两点,且与x轴的一个交点为D(﹣2,0),点P是线段CB上的动点,设CP=t(0<t<10).
(1)请直接写出B、C两点的坐标及抛物线的解析式;
(2)过点P作PE⊥BC,交抛物线于点E,连接BE,当t为何值时,∠PBE=∠OCD?
(3)点Q是x轴上的动点,过点P作PM∥BQ,交CQ于点M,作PN∥CQ,交BQ于点N,当四边形PMQN为正方形时,请求出t的值.
相关试卷
这是一份中考数学二轮复习题型突破练习题型9 二次函数综合题 类型9 二次函数与菱形有关的问题(专题训练)(2份,原卷版+教师版),文件包含中考数学二轮复习题型突破练习题型9二次函数综合题类型9二次函数与菱形有关的问题专题训练教师版docx、中考数学二轮复习题型突破练习题型9二次函数综合题类型9二次函数与菱形有关的问题专题训练学生版docx等2份试卷配套教学资源,其中试卷共47页, 欢迎下载使用。
这是一份中考数学二轮复习题型突破练习题型9 二次函数综合题 类型4 二次函数与角度有关的问题12题(专题训练)(2份,原卷版+教师版),文件包含中考数学二轮复习题型突破练习题型9二次函数综合题类型4二次函数与角度有关的问题12题专题训练教师版docx、中考数学二轮复习题型突破练习题型9二次函数综合题类型4二次函数与角度有关的问题12题专题训练学生版docx等2份试卷配套教学资源,其中试卷共55页, 欢迎下载使用。
这是一份中考数学二轮复习题型突破练习题型9 二次函数综合题 类型3 二次函数与面积有关的问题25题(专题训练)(2份,原卷版+教师版),文件包含中考数学二轮复习题型突破练习题型9二次函数综合题类型3二次函数与面积有关的问题25题专题训练教师版docx、中考数学二轮复习题型突破练习题型9二次函数综合题类型3二次函数与面积有关的问题25题专题训练学生版docx等2份试卷配套教学资源,其中试卷共95页, 欢迎下载使用。