- 重难点突破02 利用传统方法求线线角、线面角、二面角与距离 (九大题型)-2025年高考数学一轮复习讲练测(新教材新高考) 试卷 0 次下载
- 重难点突破03 立体几何解答题常考模型归纳总结(九大题型)-2025年高考数学一轮复习讲练测(新教材新高考) 试卷 0 次下载
- 拔高点突破01 定比点差法、齐次化、极点极线问题、蝴蝶问题、坎迪定理(五大题型)-2025年高考数学一轮复习讲练测(新教材新高考) 试卷 0 次下载
- 拔高点突破02 圆锥曲线中的仿射变换、非对称韦达、光学性质问题(五大题型)-2025年高考数学一轮复习讲练测(新教材新高考) 试卷 0 次下载
- 拔高点突破03 圆锥曲线背景下的新定义问题(八大题型)-2025年高考数学一轮复习讲练测(新教材新高考) 试卷 0 次下载
第七章 立体几何与空间向量(测试)-2025年高考数学一轮复习讲练测(新教材新高考).1
展开注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共58分)
一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设是三个不同平面,且,则是的( )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
2.已知向量,,向量在向量上的投影向量为( ).
A.B.
C.D.
3.四棱台的上底面是边长为2的正方形,下底面是边长为4的正方形,四条侧棱的长均为,则该四棱台的体积为( )
A.B.C.D.
4.已知球O的体积为,点A到球心O的距离为3,则过点A的平面被球O所截的截面面积的最小值是( )
A.B.C.D.
5.三棱锥中,平面,,,,,则三棱锥外接球的表面积为( )
A.B.C.D.
6.如图,已知正方形ABCD为圆柱的轴截面,,E,F为上底面圆周上的两个动点,且EF过上底面的圆心G,若,则三棱锥的体积为( )
A.B.C.D.
7.在三棱柱中,点在棱上,满足,点在棱上,且,点在直线上,若平面,则( )
A.2B.3C.4D.5
8.已知E,F分别是棱长为2的正四面体的对棱的中点.过的平面与正四面体相截,得到一个截面多边形,则下列说法正确的是( )
A.截面多边形不可能是平行四边形B.截面多边形的周长是定值
C.截面多边形的周长的最小值是D.截面多边形的面积的取值范围是
二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.
9.已知a,b,c为三条不同的直线,为两个不同的平面,则下列说法正确的是( )
A.若,则
B.若,则
C.若,则
D.若,则
10.如图,在棱长为2的正方体中,点P是正方体的上底面内(不含边界)的动点,点Q是棱的中点,则以下命题正确的是( )
A.三棱锥的体积是定值
B.存在点P,使得与所成的角为
C.直线与平面所成角的正弦值的取值范围为
D.若,则P的轨迹的长度为
11.半正多面体(semiregular slid)亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形构成(如图所示),若它的所有棱长都为,则( )
A.平面EAB
B.该二十四等边体的体积为
C.该二十四等边体外接球的表面积为
D.PN与平面EBFN所成角的正弦值为
第二部分(非选择题 共92分)
三、填空题:本题共3小题,每小题5分,共15分。
12.已知四面体有两个面是边长为2的正三角形,另外两个面是直角三角形,则该四面体的体积等于 .
13.如图,在三棱锥中,为等边三角形,为等腰直角三角形,,平面平面ABC,D为AB的中点,则异面直线AC与PD所成角的余弦值为 .
14.要使正方体以直线为轴,旋转后与其自身重合,则的最小正值为 .
四、解答题:本题共5小题,共77分。解答应写出文字说明、证明过程或演算步棸。
15.(13分)
如图所示,在平行六面体中,M、N分别是、BC的中点.设,,.
(1)已知P是的中点,用、、表示、、;
(2)已知P在线段上,且,用、、表示.
16.(15分)
已知三棱锥,,,D,M,N分别是AP,AB,CP的中点,,,二面角的余弦值为.
(1)证明:;
(2)求直线MN与平面BCD所成角的正弦值.
17.(15分)
如图,平行六面体的体积为,,,,.
(1)求点A到平面的距离;
(2)求二面角的正弦值.
18.(17分)
如图,四棱锥中,底面是矩形,,,且平面平面.分别是的中点..
(1)求证:是直角三角形;
(2)求四棱锥体积的最大值;
(3)求平面与平面的夹角余弦值的范围.
19.(17分)
对于空间向量,定义,其中表示这三个数的最大值.
(1)已知,.
①写出,写出(用含的式子表示);
②当,写出的最小值及此时x的值;
(2)设,,求证:
(3)在空间直角坐标系O−xyz中,,,,点P是以O为球心,1为半径的球面上的动点,点Q是△ABC内部的动点,直接写出的最小值及相应的点P的坐标.
高考数学一轮复习讲练测(新教材新高考)专题8.8立体几何综合问题专题练习(学生版+解析): 这是一份高考数学一轮复习讲练测(新教材新高考)专题8.8立体几何综合问题专题练习(学生版+解析),共43页。试卷主要包含了 2 等内容,欢迎下载使用。
第七章 立体几何与空间向量综合测试卷(新高考专用)(含答案) 2025年高考数学一轮复习专练(新高考专用): 这是一份第七章 立体几何与空间向量综合测试卷(新高考专用)(含答案) 2025年高考数学一轮复习专练(新高考专用),文件包含第七章立体几何与空间向量综合测试卷新高考专用教师版2025年高考数学一轮复习专练新高考专用docx、第七章立体几何与空间向量综合测试卷新高考专用学生版2025年高考数学一轮复习专练新高考专用docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。
第七章 立体几何与空间向量(测试)-2024年高考数学一轮复习测试(新教材新高考): 这是一份第七章 立体几何与空间向量(测试)-2024年高考数学一轮复习测试(新教材新高考),文件包含第七章立体几何与空间向量测试原卷版docx、第七章立体几何与空间向量测试解析版docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。