年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    北京市大兴区2024-2025学年高二上学期期中检测数学试题

    北京市大兴区2024-2025学年高二上学期期中检测数学试题第1页
    北京市大兴区2024-2025学年高二上学期期中检测数学试题第2页
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京市大兴区2024-2025学年高二上学期期中检测数学试题

    展开

    这是一份北京市大兴区2024-2025学年高二上学期期中检测数学试题,共5页。
    本试卷共页,共两部分,21道小题.满分150分。考试时间120分钟。
    在试卷和答题卡上准确填写学校名称、班级、姓名和准考证号。
    3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
    4. 在答题卡上,选择题用2B铅笔作答,其他题用黑色字迹签字笔作答。
    2024.11
    2022.4
    第一部分 (选择题 共40分)
    一、选择题共10小题,每小题4分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项。
    (1)直线的倾斜角的正切值为
    (A) (B)
    (C) (D)
    (2)已知两个向量,且,则
    (A) (B)
    (C) (D)
    (3)过点,的直线的斜率为,则
    (A) (B)
    (C) (D)
    (4)圆关于轴对称的圆的方程为
    (A) (B)
    (C)(D)
    (5)若向量是直线的方向向量,向量是平面的法向量,则直线与平面的位置关系是
    (A)直线在平面内(B)相交但不垂直
    (C)平行 (D)垂直
    (6)已知直线与直线平行,则它们之间的距离为
    (A) (B)
    (C) (D)
    (7)在平行六面体中,,,则的长为
    (A) (B)
    (C) (D)
    (8)已知圆,直线上动点,过点作圆的一条切线,切点为,则的最小值为
    (A) (B)
    (C) (D)
    (9)已知点,直线与圆交于两点,则“为等边三角形”是“”的
    (A)充分而不必要条件 (B)必要而不充分条件
    (C)充分必要条件 (D)既不充分也不必要条件
    (10)如图,放在平面直角坐标系中的“太极图”整体是一个圆形,且黑色阴影区域与白色
    区域关于原点中心对称,其中黑色阴影区域在轴右侧部分的边界为一个半圆. 已知
    直线. 给出下列四个结论:
    当时,若直线截黑色阴影区域所得两部分
    面积记为,则;
    当时,直线与黑色阴影区域有个公共点;
    当时,直线与黑色阴影区域的边界曲线有个公共点.
    其中所有正确结论的序号是
    (A) (B)
    (C) (D)
    第二部分 (非选择题 共110分)
    二、填空题共5小题,每小题5分,共25分。
    (11)已知,,三点共线,则______.
    (12)已知圆,则圆心的坐标为______;当圆与轴相切时,
    则实数的值为______.
    (13)已知平面过点,,三点,直线与平面垂直,则直线的一个方向向量的坐标可以是______.
    (14)直线和与两坐标轴正半轴围成的四边形的面积为______.
    (15)如图,在正方体中,,为的中点,为棱含端
    点上的动点,给出下列四个结论:
    ①存在,使得;
    ②存在,使得平面;
    ③当为线段中点时,三棱锥的体积最小;
    ④当与重合时,直线与直线所成角的余弦值最小.
    其中所有正确结论的序号是______.
    三、解答题共6小题,共85分。解答应写出文字说明,演算步骤或证明过程。
    (16)(本小题14分)
    已知平面内两点,.
    (Ⅰ)求线段的中垂线方程;
    (Ⅱ)求过点且与直线平行的直线的方程.
    (17)(本小题14分)
    已知圆的半径为,圆心在轴的正半轴上,直线与圆相切.
    (Ⅰ)求圆的方程;
    (Ⅱ)求直线与圆相交的弦长.
    (18)(本小题14分)
    如图,在四棱锥中,平面,,,
    且.
    (Ⅰ)求直线与直线所成角的大小;
    (Ⅱ)求直线PD与平面PAC所成角的正弦值.
    (19)(本小题14分)
    已知圆过三点,直线.
    (Ⅰ)求圆的方程;
    (Ⅱ)求圆关于直线对称的圆的方程;
    (Ⅲ)若为直线上的动点,为圆上的动点,为坐标原点,求的最小值.
    (20)(本小题14分)
    在四棱锥中,底面ABCD是正方形,Q为PD的中点,,,再从条件①、条件②这两个条件中任选一个作为已知.
    (Ⅰ)求证:平面ABCD;
    (Ⅱ)求平面与平面ABCD夹角的余弦值;
    (Ⅲ)求点B到平面ACQ的距离.
    条件①:平面平面ABCD;
    条件②:.
    注:如果选择条件①和条件②分别解答,按第一个解答计分.
    (21)(本小题15分)
    已知圆:及其上一点.
    (Ⅰ)若圆与轴相切,与圆外切,且圆心在直线上,求圆的标准方程;
    (Ⅱ)设过点的直线与圆相交的另一交点为,且为直角三角形,求的方程;
    (Ⅲ)设动点,若圆上存在两点,使得,求实数的取值范围.

    相关试卷

    北京市大兴区2023-2024学年高二上学期期中检测数学试题(Word版附解析):

    这是一份北京市大兴区2023-2024学年高二上学期期中检测数学试题(Word版附解析),文件包含北京市大兴区2023-2024学年高二上学期期中检测数学试题Word版含解析docx、北京市大兴区2023-2024学年高二上学期期中检测数学试题Word版无答案docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。

    2023-2024学年北京市大兴区高二下学期期末检测数学试题(含答案):

    这是一份2023-2024学年北京市大兴区高二下学期期末检测数学试题(含答案),共9页。

    北京市大兴区2023-2024学年高二上学期期中数学试题及答案:

    这是一份北京市大兴区2023-2024学年高二上学期期中数学试题及答案,共8页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map