四川省成都市2020年中考数学模拟卷二含解析
展开第Ⅰ卷(共30分)
一、选择题(每小题3分,共30分)
1.(2019·山东中考模拟)比﹣3大2的数是( )
A.1B.﹣1C.5D.﹣5
【答案】B
【解析】
﹣3+2=﹣(3﹣2)=﹣1.
故选B.
【点睛】
此题考查有理数运算,难度不大
2.(2019·河北中考模拟)下列运算正确的是( )
A.3m+3n=6mnB.4x3﹣3x3=1C.﹣xy+xy=0D.a4+a2=a6
【答案】C
【解析】
A、3m+3n=6mn,错误;
B、4x3﹣3x3=1,错误,4x3﹣3x3=x3;
C、﹣xy+xy=0,正确;
D、a4+a2=a6,错误;
故选C.
【点睛】
本题考查了整式的加减,比较简单,容易掌握.注意不是同类项的不能合并.
3.(2019·广西中考模拟)地球上陆地的面积约为150 000 000km2.把“150 000 000”用科学记数法表示为( )
A.1.5×108 B.1.5×107 C.1.5×109 D.1.5×106
【答案】A
【解析】
150 000 000=1.5×108,
故选:A.
点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
4.(2019·辽宁中考模拟)由7个大小相同的小正方体组合成一个几何体,其俯视图如图所示,其中正方形中的数字表示该位置放置的小正方体的个数,则其左视图是( )
A.B.C.D.
【答案】A
【解析】
该几何体的左视图如图所示:
故选A.
【点睛】
本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.
5.(2019·江苏中考模拟)如图,AB∥CD,则根据图中标注的角,下列关系中成立的是 ( )
A.∠1=∠3 B.∠2+∠3=180° C.∠2+∠4<180° D.∠3+∠5=180°
【答案】D
【解析】
A、∵OC与OD不平行,∴∠1=∠3不成立,故本选项错误;
B、∵OC与OD不平行,∴∠2+∠3=180°不成立,故本选项错误;
C、∵AB∥CD,∴∠2+∠4=180°,故本选项错误;
D、∵AB∥CD,∴∠3+∠5=180°,故本选项正确.
故选D.
6.(2019·浙江中考模拟)若点A(m,n)和点B(5,﹣7)关于x轴对称,则m+n的值是( )
A.2B.﹣2C.12D.﹣12
【答案】C
【解析】
∵点A(m,n)和点B(5,-7)关于x轴对称,
∴m=5,n=7,
则m+n的值是:12.
故选C.
【点睛】
本题考查了关于x轴对称点的性质,熟记横纵坐标的符号是解题的关键.
7.(2019·浙江中考模拟)解分式方程,去分母得( )
A.B.C.D.
【答案】A
【解析】
解:方程两边乘以(x-1)
去分母得:.
故选:A.
【点睛】
此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
8.(2019·上海中考模拟)为了解某校初三学生的体重情况,从中随机抽取了80名初三学生的体重进行统计分析,在此问题中,样本是指( )
A.80B.被抽取的80名初三学生
C.被抽取的80名初三学生的体重D.该校初三学生的体重
【答案】C
【解析】
样本是被抽取的80名初三学生的体重,
故选C.
【点睛】
此题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.
9.(2019·广东博海学校中考模拟)如图,AB,BC是⊙O的两条弦,AO⊥BC,垂足为D,若⊙O的半径为5,BC=8,则AB的长为( )
A.8B.10C.D.
【答案】D
【解析】
解:∵AO⊥BC,AO过O,BC=8,
∴BD=CD=4,∠BDO=90°,
由勾股定理得:OD=,
∴AD=OA+OD=5+3=8,
在Rt△ADB中,由勾股定理得:AB=,
故选D.
【点睛】
本题考查了垂径定理和勾股定理,能根据垂径定理求出BD长是解此题的关键.
10.(2019·广东中考模拟)若抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,则k的取值范围为( )
A.k>﹣1B.k≥﹣1C.k>﹣1且k≠0D.k≥﹣1且k≠0
【答案】C
【解析】
∵二次函数y=kx2﹣2x﹣1的图象与x轴有两个交点,
∴b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>0,
∴k>﹣1,
∵抛物线y=kx2﹣2x﹣1为二次函数,
∴k≠0,
则k的取值范围为k>﹣1且k≠0,
故选C.
【点睛】
本题考查了二次函数y=ax2+bx+c的图象与x轴交点的个数的判断,熟练掌握抛物线与x轴交点的个数与b2-4ac的关系是解题的关键.注意二次项系数不等于0.
第Ⅱ卷(共70分)
二、填空题(每题4分,满分16分,将答案填在答题纸上)
11.(2019·四川中考模拟)已知a<0,那么|﹣2a|可化简为_____.
【答案】﹣3a
【解析】
∵a<0,
∴|﹣2a|=|﹣a﹣2a|=|﹣3a|=﹣3a.
【点睛】
本题主要考查了根据二次根式的意义化简.二次根式规律总结:当a≥0时,=a;当a≤0时,=﹣a.解题关键是要判断绝对值符号和根号下代数式的正负再去掉符号.
12.(2019·广东中考模拟)如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是_____.
【答案】15
【解析】
解:过D作DE⊥BC于E,
∵∠A=90°,
∴DA⊥AB,
∵BD平分∠ABC,
∴AD=DE=3,
∴△BDC的面积是:×DE×BC=×10×3=15,
故答案为15.
13.(2019·南京师范大学附属中学仙林学校中考模拟)已知点A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数y= QUOTE 的图像上,则y1、y2、y3的大小关系是__________.
【答案】y3<y2<y1.
【解析】
把点A(1,y1),B(2,y2),C(-3,y3)代入反比例函数得,所以.
14.(2019·云南中考模拟)如图,已知▱ABCD的对角线AC,BD交于点O,且AC=8,BD=10,AB=5,则△OCD的周长为_____.
【答案】14
【解析】
∵四边形ABCD是平行四边形,
∴AB=CD=5,OA=OC=4,OB=OD=5,
∴△OCD的周长=5+4+5=14,
故答案为14.
【点睛】
本题考查平行四边形的性质、三角形的周长等知识,解题的关键是熟练掌握平行四边形的性质.
三、解答题 (本大题共6小题,共54分.解答应写出文字说明、证明过程或演算步骤.)
15.(1)(2019·北京中考模拟)计算:.
【答案】
【解析】
解:原式
【点睛】
本题考查二次根式的性质、特殊角三角函数值、负整数指数幂和零次幂的性质,熟记特殊角三角函数值是解题关键.
(2)(2019·山东中考模拟)(x+3)(x﹣1)=12(用配方法)
【答案】x1=3,x2=﹣5
【解析】
将原方程整理,得x2+2x=15,
两边都加上12,得x2+2x+12=15+12,
即(x+1)2=16,
开平方,得x+1=±4,
即x+1=4,或x+1=-4,
∴x1=3,x2=-5.
点睛:用配方法进行配方时先将二次项系数化为1,然后方程左右两边同时加上一次项系数一半的平方.
16.(2019·河南中考模拟)先化简,再求值:,其中满足.
【答案】1
【解析】
原式=
∵x2−x−1=0,∴x2=x+1,
则原式=1.
17.(2019·辽宁中考模拟)为了解某地区中学生一周课外阅读时长的情况,随机抽取部分中学生进行调查,根据调查结果,将阅读时长分为四类:2小时以内,2~4小时(含2小时),4~6小时(含4小时),6小时及以上,并绘制了如图所示尚不完整的统计图.
(1)本次调查共随机抽取了 名中学生,其中课外阅读时长“2~4小时”的有 人;
(2)扇形统计图中,课外阅读时长“4~6小时”对应的圆心角度数为 °;
(3)若该地区共有20000名中学生,估计该地区中学生一周课外阅读时长不少于4小时的人数.
【答案】(1)200,40;(2)144;(3)该地区中学生一周课外阅读时长不少于4小时的有13000人.
【解析】
解:(1)本次调查共随机抽取了:50÷25%=200(名)中学生,
其中课外阅读时长“2~4小时”的有:200×20%=40(人),
故答案为:200,40;
(2)扇形统计图中,课外阅读时长“4~6小时”对应的圆心角度数为:360°×(1﹣﹣20%﹣25%)=144°,
故答案为:144;
(3)20000×(1﹣﹣20%)=13000(人),
答:该地区中学生一周课外阅读时长不少于4小时的有13000人.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时本题还考查了通过样本来估计总体.
18.(2019·山东中考模拟)某学生为测量一棵大树AH及其树叶部分AB的高度,将测角仪放在F处测得大树顶端A的仰角为30°,放在G处测得大树顶端A的仰角为60°,树叶部分下端B的仰角为45°,已知点F、G与大树底部H共线,点F、G相距15米,测角仪高度为1.5米.求该树的高度AH和树叶部分的高度AB.
【答案】AH的高度是()米,AB的高度是米.
【解析】
解:由题意可知∠AEC=30°,∠ADC=60°,∠BDC=45°,FG=15.
设CD=x米,则在Rt△ACD中,由 得AC=.
又Rt△ACE中,由得EC=3x.
∴3x=15+x.
∴x=7.5.
∴AC=.∴AH=.
∵在Rt△BCD中,∠BDC=45°,∴BC=DC=7.5.∴AB=AC﹣BC=.
答:AH的高度是()米,AB的高度是米.
【点睛】
本题考查的是三角函数的实际应用,熟练掌握三角函数是解题的关键.
19.(2019·湖南中考模拟)如图,直线y=kx+2与x轴,y轴分别交于点A(﹣1,0)和点B,与反比例函数y=的图象在第一象限内交于点C(1,n).
(1)求一次函数y=kx+2与反比例函数y=的表达式;
(2)过x轴上的点D(a,0)作平行于y轴的直线l(a>1),分别与直线y=kx+2和双曲线y=交于P、Q两点,且PQ=2QD,求点D的坐标.
【答案】一次函数解析式为;反比例函数解析式为;.
【解析】
(1)把A(﹣1,0)代入y=kx+2得﹣k+2=0,解得k=2,
∴一次函数解析式为y=2x+2;
把C(1,n)代入y=2x+2得n=4,
∴C(1,4),
把C(1,4)代入y=得m=1×4=4,
∴反比例函数解析式为y=;
(2)∵PD∥y轴,
而D(a,0),
∴P(a,2a+2),Q(a,),
∵PQ=2QD,
∴2a+2﹣=2×,
整理得a2+a﹣6=0,解得a1=2,a2=﹣3(舍去),
∴D(2,0).
【点睛】
本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数的解析式.
20.(2019·四川中考模拟)如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.
(1)求证:PD是⊙O的切线;
(2)求证:△ABD∽△DCP;
(3)当AB=5cm,AC=12cm时,求线段PC的长.
【答案】(1)证明见解析;(2)证明见解析;(3)CP=16.9cm.
【解析】
(1)如图,连接OD,
∵BC是⊙O的直径,
∴∠BAC=90°,
∵AD平分∠BAC,
∴∠BAC=2∠BAD,
∵∠BOD=2∠BAD,
∴∠BOD=∠BAC=90°,
∵DP∥BC,
∴∠ODP=∠BOD=90°,
∴PD⊥OD,
∵OD是⊙O半径,
∴PD是⊙O的切线;
(2)∵PD∥BC,
∴∠ACB=∠P,
∵∠ACB=∠ADB,
∴∠ADB=∠P,
∵∠ABD+∠ACD=180°,∠ACD+∠DCP=180°,
∴∠DCP=∠ABD,
∴△ABD∽△DCP;
(3)∵BC是⊙O的直径,
∴∠BDC=∠BAC=90°,
在Rt△ABC中,BC==13cm,
∵AD平分∠BAC,
∴∠BAD=∠CAD,
∴∠BOD=∠COD,
∴BD=CD,
在Rt△BCD中,BD2+CD2=BC2,
∴BD=CD=BC=,
∵△ABD∽△DCP,
∴,
∴,
∴CP=16.9cm.
【点睛】本题考查了切线的判定、相似三角形的判定与性质等,熟练掌握切线的判定方法、相似三角形的判定与性质定理是解题的关键.
B卷(共50分)
一、填空题(每题4分,满分20分,将答案填在答题纸上)
21.(2019·山东中考模拟)若关于x的分式方程有增根,则m的值为_____.
【答案】±
【解析】
方程两边都乘x-3,得
x-2(x-3)=m2,
∵原方程增根为x=3,
∴把x=3代入整式方程,得m=±.
【点睛】
解决增根问题的步骤:
①确定增根的值;
②化分式方程为整式方程;
③把增根代入整式方程即可求得相关字母的值.
22.(2019·广东中考模拟)若a是方程的解,计算:=______.
【答案】0
【解析】
∵a是方程x2﹣3x+1=0的一根,
∴a2﹣3a+1=0,即a2﹣3a=﹣1,a2+1=3a
∴
故答案为0.
【点睛】
本题考查了一元二次方程的解:使一元二次方程两边成立的未知数的值叫一元二次方程的解.也考查了整体思想的运用.
23.(2019·北京中考模拟)高速公路某收费站出城方向有编号为的五个小客车收费出口,假定各收费出口每20分钟通过小客车的数量分别都是不变的.同时开放其中的某两个收费出口,这两个出口20分钟一共通过的小客车数量记录如下:
在五个收费出口中,每20分钟通过小客车数量最多的一个出口的编号是___________.
【答案】B
【解析】
同时开放A、E两个安全出口,与同时开放D、E两个安全出口,20分钟的通过数量发现得到D疏散乘客比A快;
同理同时开放BC与 CD进行对比,可知B疏散乘客比D快;
同理同时开放BC与 AB进行对比,可知C疏散乘客比A快;
同理同时开放DE与 CD进行对比,可知E疏散乘客比C快;
同理同时开放AB与 AE进行对比,可知B疏散乘客比E快;
所以B口的速度最快
故答案为B.
【点睛】
本题考查简单的合理推理,考查推理论证能力等基础知识,考查运用求解能力,考查函数与方程思想,是基础题.
24.(2019·浙江中考模拟)如图,Rt△ABC中,∠C=90°,AC=3,BC=4.分别以AB、AC、BC为边在AB的同侧作正方形ABEF、ACPQ、BCMN,四块阴影部分的面积分别为S1、S2、S3、S4.则S1﹣S2+S3+S4等于_____.
【答案】6
【解析】
解:过F作AM的垂线交AM于D,
可证明Rt△ADF≌Rt△ABC,Rt△DFK≌Rt△CAT,
所以S2=SRt△ABC.
由Rt△DFK≌Rt△CAT可进一步证得:Rt△FPT≌Rt△EMK,
∴S3=S△FPT,
又可证得Rt△AQF≌Rt△ACB,
∴S1+S3=SRt△AQF=SRt△ABC.
易证Rt△ABC≌Rt△EBN,
∴S4=SRt△ABC,
∴S1﹣S2+S3+S4
=(S1+S3)﹣S2+S4
=SRt△ABC﹣SRt△ABC+SRt△ABC
=6﹣6+6
=6,
故答案是:6.
【点睛】
本题考查正方形的性质及三角形全等的判定与性质,根据已知条件证得S2=SRt△ABC,S3=SRt△AQF=SRt△ABC,S4=SRt△ABC是解决问题的关键.
25.(2019·山东中考模拟)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为_____.
【答案】(2,0).
【解析】
如图,作A2C⊥x轴于点C,设B1C=a,则A2C=a,
OC=OB1+B1C=2+a,A2(2+a,a).
∵点A2在双曲线y=(x>0)上,
∴(2+a)•a=,
解得a=﹣1,或a=﹣﹣1(舍去),
∴OB2=OB1+2B1C=2+2﹣2=2,
∴点B2的坐标为(2,0);
作A3D⊥x轴于点D,设B2D=b,则A3D=b,
OD=OB2+B2D=2+b,A2(2+b,b).
∵点A3在双曲线y=(x>0)上,
∴(2+b)•b=,
解得b=﹣+,或b=﹣﹣(舍去),
∴OB3=OB2+2B2D=2﹣2+2=2,
∴点B3的坐标为(2,0);
同理可得点B4的坐标为(2,0)即(4,0);
…,
∴点Bn的坐标为(2,0),
∴点B6的坐标为(2,0),
故答案为:(2,0).
【点睛】本题考查了规律题,反比例函数图象上点的坐标特征,等边三角形的性质,正确求出B2、B3、B4的坐标进而得出点Bn的规律是解题的关键.
二、解答题 (本大题共3小题,共30分.解答应写出文字说明、证明过程或演算步骤.)
26.(2019·辽宁中考模拟)某市实施产业精准扶贫,帮助贫困户承包荒山种植某品种蜜柚.已知该蜜柚的成本价为6元/千克,到了收获季节投入市场销售时,调查市场行情后,发现该蜜柚不会亏本,且每天的销售量y(千克)与销售单价x(元)之间的函数关系如图所示.
(1)求y与x的函数关系式,并写出x的取值范围;
(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?
(3)某村农户今年共采摘蜜柚12000千克,若该品种蜜柚的保质期为50天,按照(2)的销售方式,能否在保质期内全部销售完这批蜜柚?若能,请说明理由;若不能,应定销售价为多少元时,既能销售完又能获得最大利润?
【答案】(1)y=﹣20x+500,(x≥6);(2)当x=15.5时,w的最大值为1805元;(3)当x=13时,w=1680,此时,既能销售完又能获得最大利润.
【解析】
解:(1)将点(15,200)、(10,300)代入一次函数表达式:y=kx+b得:,
解得:,
即:函数的表达式为:y=﹣20x+500,(x≥6);
(2)设:该品种蜜柚定价为x元时,每天销售获得的利润w最大,
则:w=y(x﹣6)=﹣20(x﹣25)(x﹣6),
∵﹣20<0,故w有最大值,
当x=﹣==15.5时,w的最大值为1805元;
(3)当x=15.5时,y=190,
50×190<12000,
故:按照(2)的销售方式,不能在保质期内全部销售完;
设:应定销售价为x元时,既能销售完又能获得最大利润w,
由题意得:50(500﹣20x)≥12000,解得:x≤13,
w=﹣20(x﹣25)(x﹣6),
当x=13时,w=1680,
此时,既能销售完又能获得最大利润.
【点睛】
本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值).
27.(2018·江苏中考模拟)如图1,在等腰Rt△ABC中,∠BAC=90°,点E在AC上(且不与点A、C重合),在△ABC的外部作等腰Rt△CED,使∠CED=90°,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.
(1)求证:△AEF是等腰直角三角形;
(2)如图2,将△CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF=AE;
(3)如图3,将△CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且△CED在△ABC的下方时,若AB=2,CE=2,求线段AE的长.
【答案】(1)证明见解析;(2)证明见解析;(3)4.
【解析】
解:(1)如图1.∵四边形ABFD是平行四边形,∴AB=DF.∵AB=AC,∴AC=DF.∵DE=EC,∴AE=EF.∵∠DEC=∠AEF=90°,∴△AEF是等腰直角三角形;
(2)如图2,连接EF,DF交BC于K.∵四边形ABFD是平行四边形,∴AB∥DF,∴∠DKE=∠ABC=45°,∴∠EKF=180°﹣∠DKE=135°,EK=ED.∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF=∠ADE.∵∠DKC=∠C,∴DK=DC.∵DF=AB=AC,∴KF=AD.在△EKF和△EDA中,,∴△EKF≌△EDA(SAS),∴EF=EA,∠KEF=∠AED,∴∠FEA=∠BED=90°,∴△AEF是等腰直角三角形,∴AF=AE.
(3)如图3,当AD=AC=AB时,四边形ABFD是菱形,设AE交CD于H,依据AD=AC,ED=EC,可得AE垂直平分CD,而CE=2,∴EH=DH=CH=,Rt△ACH中,AH==3,∴AE=AH+EH=4.
点睛:本题属于四边形综合题,主要考查了全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、菱形的性质以及勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点.
28.(2019·湖南中考模拟)如图,顶点坐标为(2,﹣1)的抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,3),与x轴交于A、B两点.
(1)求抛物线的表达式;
(2)设抛物线的对称轴与直线BC交于点D,连接AC、AD,求△ACD的面积;
(3)点E为直线BC上一动点,过点E作y轴的平行线EF,与抛物线交于点F.问是否存在点E,使得以D、E、F为顶点的三角形与△BCO相似?若存在,求点E的坐标;若不存在,请说明理由.
【答案】(1)y==x2-4x+3;
(2)AS△ACD=2;
(3)①∠DFE=90°时,E1(2+,1-); E2(2-,1+);②∠EDF=90°时,E3(1,2)、E4(4,-1).
【解析】
解:(1)依题意,设抛物线的解析式为 y=a(x-2)2-1,代入C(O,3)后,得:
a(0-2)2-1=3,a=1
∴抛物线的解析式:y=(x-2)2-1=x2-4x+3.
(2)由(1)知,A(1,0)、B(3,0);
设直线BC的解析式为:y=kx+3,代入点B的坐标后,得:
3k+3=0,k=-1
∴直线BC:y=-x+3;
由(1)知:抛物线的对称轴:x=2,则 D(2,1);
∴AD==,AC==,CD==2,
即:AC2=AD2+CD2,△ACD是直角三角形,且AD⊥CD;
∴S△ACD=AD•CD=××2=2.
(3)由题意知:EF∥y轴,则∠FED=∠OCB,若△OCB与△FED相似,则有:
①∠DFE=90°,即 DF∥x轴;
将点D纵坐标代入抛物线的解析式中,得:
x2-4x+3=1,解得 x=2±;
当x=2+时,y=-x+3=1-;
当x=2-时,y=-x+3=1+;
∴E1(2+,1-)、E2(2-,1+).
②∠EDF=90°;
易知,直线AD:y=x-1,联立抛物线的解析式有:
x2-4x+3=x-1,
x2-5x+4=0,
解得 x1=1、x2=4;
当x=1时,y=-x+3=2;
当x=4时,y=-x+3=-1;
∴E3(1,2)、E4(4,-1);
综上,存在符合条件的点E,且坐标为:(2+,1-)、(2-,1+)、(1,2)或(4,-1).
“点睛”此题主要考查了函数解析式的确定、图形面积的解法以及相似三角形的判定和性质等知识;需要注意的是,已知两个三角形相似时,若对应边不相同,那么得到的结果就不一定相同,所以一定要进行分类讨论.
收费出口编号
通过小客车数量(辆)
260
330
300
360
240
2024年四川省成都市双流中学中考一模数学模拟试题(含解析): 这是一份2024年四川省成都市双流中学中考一模数学模拟试题(含解析),共32页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
四川省成都市铁路中学中考数学模拟试卷(含详细解析): 这是一份四川省成都市铁路中学中考数学模拟试卷(含详细解析),共35页。试卷主要包含了分解因式等内容,欢迎下载使用。
2022届四川省成都市名校中考数学模拟精编试卷含解析: 这是一份2022届四川省成都市名校中考数学模拟精编试卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,下列图形中,不是轴对称图形的是等内容,欢迎下载使用。