北京2024年高考数学模拟试卷附答案
展开
这是一份北京2024年高考数学模拟试卷附答案,共18页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
一、单选题
1.已知集合,,则( )
A.B.
C.D.
2.已知,则( ).
A.B.C.D.
3.圆的圆心到直线的距离为( )
A.B.C.D.
4.在的展开式中,的系数为( )
A.B.C.D.
5.设 ,是向量,则“”是“或”的( ).
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
6.设函数.已知,,且的最小值为,则( )
A.1B.2C.3D.4
7.生物丰富度指数 是河流水质的一个评价指标,其中分别表示河流中的生物种类数与生物个体总数.生物丰富度指数d越大,水质越好.如果某河流治理前后的生物种类数没有变化,生物个体总数由变为,生物丰富度指数由提高到,则( )
A.B.
C. D.
8.如图,在四棱锥中,底面是边长为4的正方形,,,该棱锥的高为( ).
A.1B.2C.D.
9.已知,是函数的图象上两个不同的点,则( )
A.B.
C.D.
10.已知是平面直角坐标系中的点集.设是中两点间距离的最大值,是表示的图形的面积,则( )
A.,B.,
C.,D.,
二、填空题
11.抛物线的焦点坐标为 .
12.在平面直角坐标系中,角与角均以为始边,它们的终边关于原点对称.若,则的最大值为 .
13.若直线与双曲线只有一个公共点,则的一个取值为 .
14.汉代刘歆设计的“铜嘉量”是龠、合、升、斗、斛五量合一的标准量器,其中升量器、斗量器、斛量器的形状均可视为圆柱.若升、斗、斛量器的容积成公比为10的等比数列,底面直径依次为 ,且斛量器的高为,则斗量器的高为 ,升量器的高为 .
15.设与是两个不同的无穷数列,且都不是常数列.记集合,给出下列4个结论:
①若与均为等差数列,则M中最多有1个元素;
②若与均为等比数列,则M中最多有2个元素;
③若为等差数列,为等比数列,则M中最多有3个元素;
④若为递增数列,为递减数列,则M中最多有1个元素.
其中正确结论的序号是 .
三、解答题
16.在中,内角的对边分别为,为钝角,,.
(1)求;
(2)从条件①、条件②、条件③这三个条件中选择一个作为已知,使得存在,求的面积.
条件①:;条件②:;条件③:.
注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.
17.如图,在四棱锥中,,,,点在上,且,.
(1)若为线段中点,求证:平面.
(2)若平面,求平面与平面夹角的余弦值.
18.某保险公司为了了解该公司某种保险产品的索赔情况,从合同险期限届满的保单中随机抽取1000份,记录并整理这些保单的索赔情况,获得数据如下表:
假设:一份保单的保费为0.4万元;前3次索赔时,保险公司每次赔偿0.8万元;第四次索赔时,保险公司赔偿0.6万元.假设不同保单的索赔次数相互独立.用频率估计概率.
(1)估计一份保单索赔次数不少于2的概率;
(2)一份保单的毛利润定义为这份保单的保费与赔偿总金额之差.
(i)记为一份保单的毛利润,估计的数学期望;
(ⅱ)如果无索赔的保单的保费减少,有索赔的保单的保费增加,试比较这种情况下一份保单毛利润的数学期望估计值与(i)中估计值的大小.(结论不要求证明)
19.已知椭圆:,以椭圆的焦点和短轴端点为顶点的四边形是边长为2的正方形.过点且斜率存在的直线与椭圆交于不同的两点,过点和的直线与椭圆的另一个交点为.
(1)求椭圆的方程及离心率;
(2)若直线BD的斜率为0,求t的值.
20.设函数,直线是曲线在点处的切线.
(1)当时,求的单调区间.
(2)求证:不经过点.
(3)当时,设点,,,为与轴的交点,与分别表示与的面积.是否存在点使得成立?若存在,这样的点有几个?
(参考数据:,,)
21.已知集合.给定数列,和序列,其中,对数列进行如下变换:将的第项均加1,其余项不变,得到的数列记作;将的第项均加1,其余项不变,得到数列记作;……;以此类推,得到,简记为.
(1)给定数列和序列,写出;
(2)是否存在序列,使得为,若存在,写出一个符合条件的;若不存在,请说明理由;
(3)若数列的各项均为正整数,且为偶数,求证:“存在序列,使得的各项都相等”的充要条件为“”.
答案
一、单选题
1.已知集合,,则( )
A.B.
C.D.
【答案】C
【详解】根据题意得.
故选C.
2.已知,则( ).
A.B.C.D.
【答案】C
【详解】根据题意得.
故选C.
3.圆的圆心到直线的距离为( )
A.B.C.D.
【答案】D
【详解】根据题意得,即,
则其圆心坐标为,则圆心到直线的距离为.
故选D.
4.在的展开式中,的系数为( )
A.B.C.D.
【答案】A
【分析】写出二项展开式,令,解出然后回代入二项展开式系数即可得解.
【详解】的二项展开式为,
令,解得,即.
故选A.
5.设 ,是向量,则“”是“或”的( ).
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
【答案】B
【详解】因为,可得,即,
可知等价于,
若或,可得,即,可知必要性成立;
若,即,无法得出或,
例如,满足,但且,可知充分性不成立;
“”是“且”的必要不充分条件.
故选B.
6.设函数.已知,,且的最小值为,则( )
A.1B.2C.3D.4
【答案】B
【详解】根据题意可知:为的最小值点,为的最大值点,
则,即,且,所以.
故选B.
7.生物丰富度指数 是河流水质的一个评价指标,其中分别表示河流中的生物种类数与生物个体总数.生物丰富度指数d越大,水质越好.如果某河流治理前后的生物种类数没有变化,生物个体总数由变为,生物丰富度指数由提高到,则( )
A.B.
C. D.
【答案】D
【分析】根据题意分析可得,消去即可求解.
【详解】根据题意得,则,即,所以.
故选D.
8.如图,在四棱锥中,底面是边长为4的正方形,,,该棱锥的高为( ).
A.1B.2C.D.
【答案】D
【详解】底面为正方形,当相邻的棱长相等时,不妨设,
分别取的中点,连接,
则,且,平面,
可知平面,且平面,
所以平面平面,
过作的垂线,垂足为,即,
由平面平面,平面,
所以平面,
根据题意可得:,则,即,
则,可得,
所以四棱锥的高为.
当相对的棱长相等时,不妨设,,
因为,此时不能形成三角形,这样情况不存在.
故选D.
9.已知,是函数的图象上两个不同的点,则( )
A.B.
C.D.
【答案】B
【详解】根据题意不妨设,因为函数是增函数,所以,即,
AB.可得,即,
根据函数是增函数,所以,A正确,B错误;
C.例如,则,可得,即,C错误;
D.例如,则,可得,即,D错误,
故选B.
10.已知是平面直角坐标系中的点集.设是中两点间距离的最大值,是表示的图形的面积,则( )
A.,B.,
C.,D.,
【答案】C
【分析】先以t为变量,分析可知所求集合表示的图形即为平面区域。
【详解】对任意给定,则,且,
可知,即,
再结合x的任意性,所以所求集合表示的图形即为平面区域,
如图阴影部分所示,其中,
可知任意两点间距离最大值;阴影部分面积.
故选C.
二、填空题
11.抛物线的焦点坐标为 .
【答案】
【分析】形如的抛物线的焦点坐标为.
【详解】根据题意抛物线的标准方程为,所以其焦点坐标为.
故答案为.
12.在平面直角坐标系中,角与角均以为始边,它们的终边关于原点对称.若,则的最大值为 .
【答案】/
【分析】首先得出.
【详解】根据题意,从而,
因为,所以的取值范围是,的取值范围是,
当且仅当,即时,取得最大值,且最大值为.
答案为.
13.若直线与双曲线只有一个公共点,则的一个取值为 .
【答案】(或,答案不唯一)
【分析】联立直线方程与双曲线方程,根据交点个数与方程根的情况列式即可求解.
【详解】联立,化简并整理得:,
由题意得或,
解得或无解,即,经检验正确.
答案为或.
14.汉代刘歆设计的“铜嘉量”是龠、合、升、斗、斛五量合一的标准量器,其中升量器、斗量器、斛量器的形状均可视为圆柱.若升、斗、斛量器的容积成公比为10的等比数列,底面直径依次为 ,且斛量器的高为,则斗量器的高为 ,升量器的高为 .
【答案】 23 57.5/
【详解】设升量器的高为,斗量器的高为(单位都是),则,
,.
答案为.
15.设与是两个不同的无穷数列,且都不是常数列.记集合,给出下列4个结论:
①若与均为等差数列,则M中最多有1个元素;
②若与均为等比数列,则M中最多有2个元素;
③若为等差数列,为等比数列,则M中最多有3个元素;
④若为递增数列,为递减数列,则M中最多有1个元素.
其中正确结论的序号是 .
【答案】①③④
【详解】①,因为均为等差数列,故它们的散点图分布在直线上,
而两条直线至多有一个公共点,故中至多一个元素,①正确.
②,取则均为等比数列,但当为偶数时,有,此时中有无穷多个元素,②错误.
③,设,,若中至少四个元素,则关于的方程至少有4个不同的正数解,若q>0,q≠1,则由和的散点图可得关于的方程至多有两个不同的解,矛盾;若,考虑关于的方程奇数解的个数和偶数解的个数,当有偶数解,此方程即为,方程至多有两个偶数解,且有两个偶数解时,
否则,因单调性相反,
方程至多一个偶数解,
当有奇数解,此方程即为,
方程至多有两个奇数解,且有两个奇数解时即
否则,因单调性相反,
方程至多一个奇数解,
因为,不可能同时成立,因此不可能有4个不同的整数解,即M中最多有3个元素,③正确.
④因为为递增数列,为递减数列,前者散点图呈上升趋势,后者的散点图呈下降趋势,两者至多一个交点,④正确.
答案为①③④.
三、解答题
16.在中,内角的对边分别为,为钝角,,.
(1)求;
(2)从条件①、条件②、条件③这三个条件中选择一个作为已知,使得存在,求的面积.
条件①:;条件②:;条件③:.
注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.
【答案】(1);
(2)选择①无解;选择②和③△ABC面积均为.
【分析】选择①,利用正弦定理得,结合(1)问答案即可排除;选择②,首先求出,再代入式子得,再利用两角和的正弦公式即可求出,最后利用三角形面积公式即可;选择③,首先得到,再利用正弦定理得到,再利用两角和的正弦公式即可求出,最后利用三角形面积公式即可;
【详解】(1)根据题意得,因为为钝角,
则,则,则,解得,
因为为钝角,则.
(2)选择①,则,因为,则为锐角,则,
此时,错误;
选择②,因为为三角形内角,则,
则代入得,解得,
,
则.
选择③,则有,解得,
由正弦定理得,即,解得,
因为为三角形内角,则,
则
,
则
17.如图,在四棱锥中,,,,点在上,且,.
(1)若为线段中点,求证:平面.
(2)若平面,求平面与平面夹角的余弦值.
【答案】(1)见解析
(2)
【详解】(1)取的中点为,接,则,
而,故,故四边形为平行四边形,
故,而平面,平面,
所以平面.
(2)
因为,故,故,
故四边形为平行四边形,故,所以平面,
而平面,故,而,
故建立如图所示的空间直角坐标系,
则,
则
设平面的法向量为,
则由可得,取,
设平面的法向量为,
则由可得,取,
故,
因此平面与平面夹角的余弦值为
18.某保险公司为了了解该公司某种保险产品的索赔情况,从合同险期限届满的保单中随机抽取1000份,记录并整理这些保单的索赔情况,获得数据如下表:
假设:一份保单的保费为0.4万元;前3次索赔时,保险公司每次赔偿0.8万元;第四次索赔时,保险公司赔偿0.6万元.假设不同保单的索赔次数相互独立.用频率估计概率.
(1)估计一份保单索赔次数不少于2的概率;
(2)一份保单的毛利润定义为这份保单的保费与赔偿总金额之差.
(i)记为一份保单的毛利润,估计的数学期望;
(ⅱ)如果无索赔的保单的保费减少,有索赔的保单的保费增加,试比较这种情况下一份保单毛利润的数学期望估计值与(i)中估计值的大小.(结论不要求证明)
【答案】(1)
(2)(i)0.122万元;(ii) 这种情况下一份保单毛利润的数学期望估计值大于(i)中估计值
【详解】(1)设为“随机抽取一单,赔偿不少于2次”,
由题设中的统计数据可得.
(2)(ⅰ)设为赔付金额,则可取,
由题设中的统计数据可得,
,,
,
故
故(万元).
(ⅱ)由题设保费的变化为,
故(万元),
因此.
19.已知椭圆:,以椭圆的焦点和短轴端点为顶点的四边形是边长为2的正方形.过点且斜率存在的直线与椭圆交于不同的两点,过点和的直线与椭圆的另一个交点为.
(1)求椭圆的方程及离心率;
(2)若直线BD的斜率为0,求t的值.
【答案】(1)
(2)
【分析】(1)根据题意得,进一步得;
(2)设,,联立椭圆方程,由韦达定理有,而,令.
【详解】(1)根据题意,从而,
所以椭圆方程为,离心率为;
(2)直线斜率不为0,否则直线与椭圆无交点,矛盾,
从而设,,
联立,化简并整理得,
根据题意,即应满足,
所以,
若直线斜率为0,由椭圆的对称性可设,
所以,在直线方程中令,
得,
所以,
此时应满足,即应满足或,
由上所述,满足题意,此时或.
20.设函数,直线是曲线在点处的切线.
(1)当时,求的单调区间.
(2)求证:不经过点.
(3)当时,设点,,,为与轴的交点,与分别表示与的面积.是否存在点使得成立?若存在,这样的点有几个?
(参考数据:,,)
【答案】(1)单调递减区间为,单调递增区间为.
(2)见解析
(3)2
【分析】(1)直接代入;
(2)写出切线方程,将代入再设新函数,利用导数研究其零点即可;
(3)分别写出面积表达式,代入得到,再设新函数研究其零点即可.
【详解】(1),
当时,;当,f'x>0;
在上单调递减,在上单调递增.
则的单调递减区间为,单调递增区间为.
(2),切线的斜率为,
则切线方程为,
将代入则,
即,则,,
令,
假设过,则在存在零点.
,在上单调递增,,
在无零点,与假设矛盾,故直线不过.
(3)时,.
,设与轴交点为,
时,若,则此时与必有交点,与切线定义矛盾.
由(2)知.所以,
则切线的方程为,
令,则.
,则,
,记,
满足条件的有几个即有几个零点.
,
当时,,此时单调递减;
当时,,此时单调递增;
当时,,此时单调递减;
因为,
,
所以由零点存在性定理及的单调性,在上必有一个零点,在上必有一个零点,
由上所述,有两个零点,即满足的有两个.
21.已知集合.给定数列,和序列,其中,对数列进行如下变换:将的第项均加1,其余项不变,得到的数列记作;将的第项均加1,其余项不变,得到数列记作;……;以此类推,得到,简记为.
(1)给定数列和序列,写出;
(2)是否存在序列,使得为,若存在,写出一个符合条件的;若不存在,请说明理由;
(3)若数列的各项均为正整数,且为偶数,求证:“存在序列,使得的各项都相等”的充要条件为“”.
【答案】(1)
(2)不存在符合条件的,理由见解析
(3)见解析
【分析】解法一:利用反证法,假设存在符合条件的,由此列出方程组,进一步说明方程组无解即可;解法二:对于任意序列,所得数列之和比原数列之和多4,可知序列共有8项,可知:,检验即可;
解法一:分充分性和必要性两方面论证;解法二:若,分类讨论相等得个数,结合题意证明即可;若存在序列,使得为常数列。
【详解】(1)因为数列,
由序列可得;
由序列可得;
由序列可得;
所以.
(2)解法一:假设存在符合条件的,可知的第项之和为,第项之和为,
则,而该方程组无解,故假设不成立,
故不存在符合条件的;
解法二:根据题意可知:对于任意序列,所得数列之和比原数列之和多4,
假设存在符合条件的,且,
因为,即序列共有8项,
根据题意可知:,
检验可知:当时,上式不成立,
即假设不成立,所以不存在符合条件的.
(3)解法一:我们设序列为,特别规定.
必要性:
若存在序列,使得的各项都相等.
则,所以.
根据的定义,显然有,这里,.
所以不断使用该式就得到,,必要性得证.
充分性:
若.
根据已知,为偶数,而,所以也是偶数.
我们设是通过合法的序列的变换能得到的所有可能的数列中,使得最小的一个.
上面已经证明,这里,.
从而由可得.
同时,由于总是偶数,所以和的奇偶性保持不变,从而和都是偶数.
下面证明不存在使得.
假设存在,根据对称性,不妨设,,即.
情况1:若,则由和都是偶数,知.
对该数列连续作四次变换后,新的相比原来的减少,这与的最小性矛盾;
情况2:若,不妨设.
情况2-1:如果,则对该数列连续作两次变换后,新的相比原来的至少减少,这与的最小性矛盾;
情况2-2:如果,则对该数列连续作两次变换后,新的相比原来的至少减少,这与的最小性矛盾.
这就说明无论如何都会导致矛盾,所以对任意的都有.
假设存在使得,则是奇数,所以都是奇数,设为.
则此时对任意,由可知必有.
而和都是偶数,故集合中的四个元素之和为偶数,对该数列进行一次变换,则该数列成为常数列,新的等于零,比原来的更小,这与的最小性矛盾.
综上,只可能,而,故是常数列,充分性得证.
解法二:由题意可知:中序列的顺序不影响的结果,
且相对于序列也是无序的,
(ⅰ)若,
不妨设,则,
①当,则,
分别执行个序列、个序列,
可得,为常数列;
②当中有且仅有三个数相等,不妨设,则,
即,
分别执行个序列、个序列
可得,
即,
因为为偶数,即为偶数,
可知的奇偶性相同,则,
分别执行个序列,,,,
可得,
为常数列;
③若,则,即,
分别执行个、个,
可得,
因为,
可得,
即转为①;
④当中有且仅有两个数相等,不妨设,则,
即,
分别执行个、个,
可得,
且,可得,
即转为②;
⑤若,则,即,
分别执行个、个,
可得,
且,可得,
即转为③;
由上所述:若,则存在序列,使得为常数列;
(ⅱ)若存在序列,使得为常数列,因为对任意,
均有成立,
若为常数列,则,
所以;
“存在序列,使得为常数列”的充要条件为“”.
赔偿次数
0
1
2
3
4
单数
赔偿次数
0
1
2
3
4
单数
相关试卷
这是一份天津2024年高考数学模拟试卷附答案,共19页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份北京市高考数学模拟试卷(文)-(8套),共36页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份北京高考数学模拟试卷-(文+理),共9页。