重庆市万州国本中学2024-2025学年数学九上开学检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知三条线段的长分别为1.5,2,3,则下列线段中,不能与它们组成比例线段的是( )
A.lB.2.25C.4D.2
2、(4分)如图,过正方形的顶点作直线,点、到直线的距离分别为和,则的长为( )
A.B.C.D.
3、(4分)已知一组数据2、x、7、3、5、3、2的众数是2,则这组数据的中位数是( )
A.2B.2.5C.3D.5
4、(4分)点P是正方形ABCD边AB上一点(不与A、B重合),连接PD并将线段PD绕点P顺时针旋转90°,得线段PE,连接BE,则∠CBE等于( )
A.75°B.60°C.30°D.45°
5、(4分)当时,函数的值是( )
A.-3B.-5C.-7D.-9
6、(4分)下列各式中,不是最简二次根式的是( )
A.B.C.D.
7、(4分)如图中的图象(折线ABCDE)描述了一汽车在某一直道上的行驶过程中,汽车离出发地的距离s(千米)和行驶时间t(小时)之间的函数关系.根据图中提供的信息,给出下列说法:
①汽车共行驶了120千米;
②汽车在行驶途中停留了0.5小时;
③汽车在整个行驶过程中的平均速度为千米/时;
④汽车自出发后3小时至4.5小时之间行驶的速度在逐渐减少.
其中正确的说法有( )
A.1个B.2个C.3个D.4个
8、(4分)五边形的内角和是( )
A.180°B.360°C.540°D.720°
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若实数、满足,则以、的值为边长的等腰三角形的周长为
。
10、(4分)如图,Rt△ABC中,∠BAC=90°,AB=6,AC=8,P为BC上一动点,PE⊥AB于E,PF⊥AC于F,则EF最小值是________.
11、(4分)如图,点A,B分别是反比例函数y=与y=的图象上的点,连接AB,过点B作BC⊥x轴于点C,连接AC交y轴于点E.若AB∥x轴,AE:EC=1:2,则k的值为_____.
12、(4分)把直线y=﹣2x向上平移后得到直线AB,直线AB经过点(m,n),且2m+n=6,则直线AB的解析式为______.
13、(4分)平面直角坐标系内,点P(3,﹣4)到y轴的距离是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,已知点是反比例函数的图象上一点过点作轴于点,连结,的面积为.
(1)求和的值.
(2)直线与的延长线交于点,与反比例函数图象交于点.
①若,求点坐标;②若点到直线的距离等于,求的值.
15、(8分)解不等式组,并在数轴上表示出它的解集.
16、(8分)如图,菱形ABCD的对角线AC和BD交于点O,AB=10,∠ABC=60°,求菱形ABCD的面积.
17、(10分)在平面直角坐标系中,的位置如图所示(每个小方格都是边长1个单位长度的正方形).
(1)将沿轴方向向左平移6个单位,画出平移后得到的.
(2)将绕着点顺时针旋转,画出旋转后得到的;直接写出点的坐标.
(3)作出关于原点成中心对称的,并直接写出的坐标.
18、(10分)甲、乙两人利用不同的交通工具,沿同一路线从A地出发前往B地,甲出发1h后,乙出发,设甲与A地相距y甲(km),乙与A地相距y乙(km),甲离开A地的时间为x(h),y甲、y乙与x之间的函数图象如图所示.
(1)甲的速度是_____km/h;
(2)当1≤x≤5时,求y乙关于x的函数解析式;
(3)当乙与A地相距240km时,甲与A地相距_____km.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,四边形是矩形 ,是延长线上的一点,是上一点,;若,则 = ________ .
20、(4分)函数y=与y=k2x(k1,k2均是不为0的常数)的图象相交于A、B两点,若点A的坐标是(1,2),则点B的坐标是______.
21、(4分)不透明的布袋里有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,那么从布袋中任意摸出一球恰好为红球的概率是_____.
22、(4分)若关于x的分式方程的解为非负数,则a的取值范围是_____.
23、(4分)如图,直线y=mx与双曲线y=交于A、B两点,D为x轴上一点,连接BD交y轴与点C,若C(0,-2)恰好为BD中点,且△ABD的面积为6,则B点坐标为__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在平面直角坐标系中,直线交轴于点,交轴于点.点在轴的负半轴上,且的面积为8,直线和直线相交于点.
(1)求直线的解析式;
(2)在线段上找一点,使得,线段与相交于点.
①求点的坐标;
②点在轴上,且,直接写出的长为 .
25、(10分)如图,在△ABC中,AD⊥BC,垂足为D,E为AC上一点,BE交AD于F,且BF=AC,FD=CD,AD=3,求AB的长.
26、(12分)如图,在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=1.
(1)求CD,AD的值;
(2)判断△ABC的形状,并说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
对于四条线段a、b、c、d,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,如 ab=cd(即ad=bc),我们就说这四条线段是成比例线段,简称比例线段.据此求解可得.
【详解】
解:A.由1×3=1.5×2知1与1.5,2,3组成比例线段,此选项不符合题意;
B.由1.5×3=2.25×2知2.25与1.5,2,3组成比例线段,此选项不符合题意;
C.由1.5×4=3×2知4与1.5,2,3组成比例线段,此选项不符合题意;
D.由1.5×3≠2×2知2与1.5,2,3不能组成比例线段,此选项符合题意;
故选:D
本题主要考查了成比例线段的关系,判定四条线段是否成比例,只要把四条线段按大小顺序排列好,判断前两条线段之比与后两条线段之比是否相等即可,求线段之比时,要先统一线段的长度单位,最后的结果与所选取的单位无关系.
2、A
【解析】
先证明△ABE≌△BCF,得到BE=CF=1,在Rt△ABE中利用勾股定理可得AB=2,由此可得AC长.
【详解】
解:∵四边形ABCD是正方形,
∴AB=AC,∠ABC=90°.
∵∠ABE+∠EAB=90°,∠ABE+∠CBF=90°,
∴∠EAB=∠CBF.
又∠AEB=∠CFB=90°,
∴△ABE≌BCF(AAS).
∴BE=CF=1.
在Rt△ABE中,利用勾股定理可得AB===2.
则AC=AB=2.
故选A.
本题主要考查了正方形的性质、全等三角形的判定和性质,以及勾股定理,解题的关键是通过全等转化线段使其划归于一直角三角形中,再利用勾股定理进行求解.
3、C
【解析】
根据众数定义首先求出x的值,再根据中位数的求法,求出中位数.
【详解】
解:数据2,x,7,3,5,3,2的众数是2,说明2出现的次数最多,x是未知数时2,3,均出现两次,.x=2.
这组数据从小到大排列:2,2,2,3,3,5,7.处于中间位置的数是3,因而的中位数是3.
故选:C.
本题考查的是平均数、众数和中位数.要注意,当所给数据有单位时,所求得的平均数、众数和中位数与原数据的单位相同,不要漏单位.
4、D
【解析】
过E作AB的延长线AF的垂线,垂足为F,可得出∠F为直角,又四边形ABCD为正方形,可得出∠A为直角,进而得到一对角相等,由旋转可得∠DPE为直角,根据平角的定义得到一对角互余,在直角三角形ADP中,根据两锐角互余得到一对角互余,根据等角的余角相等可得出一对角相等,再由PD=PE,利用AAS可得出三角形ADP与三角形PEF全等,根据确定三角形的对应边相等可得出AD=PF,AP=EF,再由正方形的边长相等得到AD=AB,由AP+PB=PB+BF,得到AP=BF,等量代换可得出EF=BF,即三角形BEF为等腰直角三角形,可得出∠EBF为45°,再由∠CBF为直角,即可求出∠CBE的度数.
【详解】
过点E作EF⊥AF,交AB的延长线于点F,则∠F=90°,
∵四边形ABCD为正方形,
∴AD=AB,∠A=∠ABC=90°,
∴∠ADP+∠APD=90°,
由旋转可得:PD=PE,∠DPE=90°,
∴∠APD+∠EPF=90°,
∴∠ADP=∠EPF,
在△APD和△FEP中,
∵,
∴△APD≌△FEP(AAS),
∴AP=EF,AD=PF,
又∵AD=AB,
∴PF=AB,即AP+PB=PB+BF,
∴AP=BF,
∴BF=EF,又∠F=90°,
∴△BEF为等腰直角三角形,
∴∠EBF=45°,又∠CBF=90°,
则∠CBE=45°.
故选D.
此题考查了正方形的性质,全等三角形的判定与性质,旋转的性质,以及等腰直角三角形的判定与性质,其中作出相应的辅助线是解本题的关键.
5、C
【解析】
将代入函数解析式即可求出.
【详解】
解:当时,函数,
故选C.
本题考查函数值的意义,将x的值代入函数关系式按照关系式提供的运算计算出y的值即为函数值.
6、A
【解析】
根据最简二次根式的定义即可判断.
【详解】
解:A、=,故不是最简二次根式;
B、是最简二次根式;
C、是最简二次根式;
D、是最简二次根式.
故本题选择A.
掌握判断最简二次根式的依据是解本题的关键.
7、B
【解析】
根据函数图形的s轴判断行驶的总路程,从而得到①错误;根据s不变时为停留时间判断出②正确;根据平均速度=总路程÷总时间列式计算即可判断出③正确;再根据一次函数图象的实际意义判断出④错误.
【详解】
①由图可知,汽车共行驶了120×2=240千米,故本小题错误;
②汽车在行驶途中停留了2-1.5=0.5小时,故本小题正确;
③汽车在整个行驶过程中的平均速度为
千米/时,故本小题正确;
④汽车自出发后3小时至4.5小时之间行驶离出发地越来越近,是匀速运动,故本小题错误;
综上所述,正确的说法有②③共2个.
故选:B.
本题考查了一次函数的应用,主要利用了路程、速度、时间三者之间的关系,准确识图,理解转折点的实际意义是解题的关键.
8、C
【解析】
根据n边形的内角和为:,且n为整数,求出五边形的内角和是多少度即可.
【详解】
解:五边形的内角和是:
(5﹣2)×180°
=3×180°
=540°
故选:C.
此题主要考查了多边形的内角和定理,要熟练掌握,解答此题的关键是要明确n边形的内角和为:,且n为整数.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、20。
【解析】
先根据非负数的性质列式求出x、y的值,再分4是腰长与底边两种情况讨论求解:
根据题意得,x﹣4=0,y﹣8=0,解得x=4,y=8。
①4是腰长时,三角形的三边分别为4、4、8,
∵4+4=8,∴不能组成三角形,
②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=4+8+8=20。
所以,三角形的周长为20。
10、4.8
【解析】
【分析】连接AP,由题意知四边形AFPE是矩形,由矩形的性质知EF=AP,所以当AP最小时,EF最小,根据垂线段最短进行解答即可.
【详解】如图,连接AP,
由题意知,四边形AFPE是矩形,则有AP=EF,
当EF取最小值时,则AP也取最小值,
∴当AP为直角三角形ABC的斜边上的高时,即AP⊥BC时,AP有最小值,此时EF有最小值,
由勾股定理知BC==10,
∵S△ABC=AB•AC=BC•AP,
∴AP=4.8,
即EF的最小值是4.8,
故答案为:4.8.
【点睛】本题考查了矩形的判定与性质、勾股定理、垂线段最短等,正确分析是解题的关键.
11、1.
【解析】
设A(m,),则B(﹣mk,),设AB交y轴于M,利用平行线的性质,得到AM和MB的比值,即可求解.
【详解】
解:设A(m,),则B(﹣mk,),设AB交y轴于M.
∵EM∥BC,
∴AM:MB=AE:EC=1:1,
∴﹣m:(﹣mk)=1:1,
∴k=1,
故答案为1.
本题考查的知识点是反比例函数系数k的几何意义,解题关键是利用平行线的性质进行解题.
12、y=-2x+1
【解析】
分析:由题意知,直线AB的斜率,又已知直线AB上的一点(m,n),所以用直线的点斜式方程y-y0=k(x-x0)求得解析式即可.
详解:∵直线AB是直线y=-2x平移后得到的,
∴直线AB的k是-2(直线平移后,其斜率不变)
∴设直线AB的方程为y-y0=-2(x-x0) ①
把点(m,n)代入①并整理,得
y=-2x+(2m+n) ②
∵2m+n=1 ③
把③代入②,解得y=-2x+1
即直线AB的解析式为y=-2x+1.
点睛:本题是关于一次函数的图象与它平移后图象的转变的题目,在解题时,紧紧抓住直线平移后,斜率不变这一性质,再根据题意中的已知条件,来确定用哪种方程(点斜式、斜截式、两点式等)来解答.
13、3
【解析】
根据平面直角坐标系的特点,可知到y轴的距离为横坐标的绝对值,因此可知P点到y轴的距离为3.
故答案为3.
三、解答题(本大题共5个小题,共48分)
14、(1),;(2)①;②.
【解析】
(1)根据题意将点的坐标代入反比例函数进行运算即可.
(2) ①将,将代入即可得出点C的坐标
②将代入求得点,得出E的横坐标,再代入反比例函数中计算即可
【详解】
解:(1)根据题意可知:的面积=k,
又反比例函数的图象位于第一象限,k>0,则k=8
将k=8和代入反比例函数即可得m=4
(2)①若,将代入,可得点.
②将代入,可得点,则.
点的横坐标为:.
点E在直线上,点E的纵坐标为:,
点的反比例函数上,.
解得:,(舍去)
.
本题考查反比例函数,熟练掌握计算法则是解题关键.
15、﹣1≤x<3,数轴上表示见解析
【解析】
分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
【详解】
解:解不等式①,得:,
解不等式②,得:,
则不等式组的解集为,
将解集表示在数轴上如下:
本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
16、
【解析】
根据菱形的性质得到AO的长度,由等边三角形的性质和勾股定理,得到BO的长度,由菱形的面积公式可求解.
【详解】
解:菱形ABCD中,BA=BC,∠ABC=60°,
∴三角形ABC为等边三角形,
∴AC=AB=10;
∴AO=5,
∴BO==5
∴BD=10
∴菱形ABCD的面为S=
本题考查了菱形的性质,熟练运用菱形的面积公式是本题的关键.
17、(1)见解析;(2)见解析;;(3)见解析;.
【解析】
(1)图形的平移时,我们只需要把三个顶点ABC,按照点的平移方式,平移得到新点,然后顺次连接各点即为平移后的.
(2)首先只需要画出B,C旋转后的对应点,,然后顺次连接各点即为旋转过后的,然后写出坐标即可;
(3)首先依次画出点ABC关于原点成中心对称的对应点,然后顺次连接各点即可得到,然后写出坐标即可.
【详解】
解:(1)如图所示;
(2)如图所示,由图可知;
(3)如图所示,由图可知.
本题的解题关键是:根据图形平移、旋转、中心对称的性质,找到对应点位置,顺次连接对应点即是变化后的图形;这里需要注意的是运用点的平移时,横坐标满足“左(移)减右(移)加”,纵坐标满足“下(移)减上(移)加;旋转时找准旋转中心和旋转角度,再进行画图.
18、(1)V甲=60km/h (2)y乙=90x-90 (3)220
【解析】
(1)根据图象确定出甲的路程与时间,即可求出速度;
(2)利用待定系数法确定出y乙关于x的函数解析式即可;
(3)求出乙距A地240km时的时间,加上1,再乘以甲的速度即可得到结果.
【详解】
(1)根据图象得:360÷6=60km/h;
(2)当1≤x≤5时,设y乙=kx+b,
把(1,0)与(5,360)代入得: ,
解得:k=90,b=-90,
则y乙=90x-90;
(3)∵乙与A地相距240km,且乙的速度为360÷(5-1)=90km/h,
∴乙用的时间是240÷90=h,
则甲与A地相距60×(+1)=220km.
此题考查了一次函数的应用,弄清图象中的数据是解本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
分析:由矩形的性质得出∠BCD=90°,AB∥CD,AD∥BC,证出∠FEA=∠ECD,∠DAC=∠ACB=21°,由三角形的外角性质得出∠ACF=2∠FEA,设∠ECD=x,则∠ACF=2x,∠ACD=3x,由互余两角关系得出方程,解方程即可.
详解:∵四边形ABCD是矩形,
∴∠BCD=90°,AB∥CD,AD∥BC,
∴∠FEA=∠ECD,∠DAC=∠ACB=21°,
∵∠ACF=∠AFC,∠FAE=∠FEA,
∴∠ACF=2∠FEA,
设∠ECD=x,则∠ACF=2x,
∴∠ACD=3x,
∴3x+21°=90°,
解得:x=23°.
故答案为:23°.
点睛:本题考查了矩形的性质、平行线的性质、直角三角形的性质、三角形的外角性质;熟练掌握矩形的性质和平行线的性质是解决问题的关键.
20、 (-1,-2)
【解析】
根据函数图象的中心对称性,由一个交点坐标,得出另一个交点坐标,“关于原点对称的两个的纵横坐标都是互为相反数”这一结论得出答案.
【详解】
∵正比例函数y=k2x与反比例函数数y=的图象都是以原点为对称中心的中心对称图形,
∴他们的交点A与点B也关于原点对称,
∵A(1,2)
∴B(-1,-2)
故答案为:(-1,-2)
考查正比例函数、反比例函数的图象和性质,得出点A和点B关于原点对称是解决问题的关键,掌握“关于原点对称的两个的纵横坐标都是互为相反数”是前提.
21、
【解析】
∵在不透明的袋中装有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,
∴从这不透明的袋里随机摸出一个球,所摸到的球恰好为红球的概率是:.
考点:概率公式.
22、且
【解析】
分式方程去分母得:2(2x-a)=x-2,
去括号移项合并得:3x=2a-2,
解得:,
∵分式方程的解为非负数,
∴ 且 ,
解得:a≥1 且a≠4 .
23、(,-4)
【解析】
设点B坐标为(a,b),由点C(0,-2)是BD中点可得b=-4,D(-a,0),根据反比例函数的对称性质可得A(-a,4),根据A、D两点坐标可得AD⊥x轴,根据△ABD的面积公式列方程可求出a值,即可得点B坐标.
【详解】
设点B坐标为(a,b),
∵点C(0,-2)是BD中点,点D在x轴上,
∴b=-4,D(-a,0),
∵直线y=mx与双曲线y=交于A、B两点,
∴A(-a,4),
∴AD⊥x轴,AD=4,
∵△ABD的面积为6,
∴S△ABD=AD×2a=6
∴a=,
∴点B坐标为(,-4)
本题考查反比例函数的性质,反比例函数图象是以原点为对称中心的双曲线,根据反比例函数的对称性表示出A点坐标是解题关键.
二、解答题(本大题共3个小题,共30分)
24、(1)直线的解析式为;(2)①,,②满足条件的的值为8或.
【解析】
(1)求出B,C两点坐标,利用待定系数法即可解决问题.
(2)①连接AD,利用全等三角形的性质,求出直线DF的解析式,构建方程组确定交点E坐标即可.
②如图1中,将线段FD绕点F顺时针旋转90°得到FG,作DE⊥y轴于E,GH⊥y轴于F.根据全等三角形,分两种情形分别求解即可.
【详解】
(1)直线交轴于点,交轴于点,
,,
点在轴的负半轴上,且的面积为8,
,
,则,
设直线的解析式为即,
解得,
故直线的解析式为.
(2)①连接.
点是直线和直线的交点,故联立,
解得,即.
,故,且,
,,
,
,,
即,可求直线的解析式为,
点是直线和直线的交点,
故联立,解得,
即,.
②如图1中,将线段绕点顺时针旋转得到,作轴于,轴于.
则,
,,
,,
直线的解析式为,
设直线交轴于,则,
,
.
作,则,
可得直线的解析式为,
,
,
综上所述,满足条件的的值为8或.
本题考查用待定系数法求一次函数的解析式,两条直线的交点,利用坐标求线段长度证全等,灵活运用一次函数以及全等是解题的关键.
25、3
【解析】
根据AD⊥BC得出∠ADB=∠ADC=90°,然后得出RT△BDF和RT△ADC全等,从而得出AD=BD=3,然后根据Rt△ABD的勾股定理求出AB的长度.
【详解】
∵AD⊥BC
∴∠ADB=∠ADC=90°
在RT△BDF和RT△ADC中,
∴RT△BDF≌RT△ADC(HL)
∴AD=BD=3
在RT△ABD中,AB2= AD2+BD2
AB2= 32+32
AB=3
考点:(1)、三角形全等;(2)、勾股定理
26、(1)12,16;(2)△ABC为直角三角形,理由见解析
【解析】
(1)在直角三角形中,应用勾股定理求值即可;
(2)先计算出AC2+BC2=AB2,即可判断出△ABC为直角三角形.
【详解】
解:(1)∵CD⊥AB,
∴△BCD和△ACD都是直角三角形,
∴CD==12,
AD==16;
(2)△ABC为直角三角形,
理由:∵AD=16,BD=1,
∴AB=AD+BD=16+1=25,
∵AC2+BC2=202+152=625=252=AB2,
∴△ABC为直角三角形.
考查了勾股定理的应用,解题关键是熟记勾股定理以及勾股定理的逆定理.
题号
一
二
三
四
五
总分
得分
批阅人
重庆市万州三中学2024-2025学年数学九年级第一学期开学检测模拟试题【含答案】: 这是一份重庆市万州三中学2024-2025学年数学九年级第一学期开学检测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
重庆市万州二中学2024-2025学年数学九上开学联考模拟试题【含答案】: 这是一份重庆市万州二中学2024-2025学年数学九上开学联考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届重庆市万州新田中学数学九上开学复习检测模拟试题【含答案】: 这是一份2025届重庆市万州新田中学数学九上开学复习检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。