重庆市丰都县琢成学校2024-2025学年数学九年级第一学期开学质量跟踪监视模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知点A(﹣1,y1),点B(2,y2)在函数y=﹣3x+2的图象上,那么y1与y2的大小关系是( )
A.y1>y2B.y1<y2C.y1=y2D.不能确定
2、(4分)如图,,,点在边上(与、不重合),四边形为正方形,过点作,交的延长线于点,连接,交于点,对于下列结论:①;②四边形是矩形;③.其中正确的是( )
A.①②③B.①②C.①③D.②③
3、(4分)下列等式一定成立的是( )
A.-=B.∣2-=2-C.D.-=-4
4、(4分)下列各式中,不是最简二次根式的是( )
A.B.C.D.
5、(4分)已知直角三角形两边的长为3和4,则此三角形的周长为( )
A.12B.7+C.12或7+D.以上都不对
6、(4分)等式•=成立的条件是( )
A.B.C.D.
7、(4分)将抛物线y=2(x-7)2+3平移,使平移后的函数图象顶点落在y轴上,则下列平移中正确的是( )
A.向上平移3个单位 B.向下平移3个单位
C.向左平移7个单位 D.向右平移7个单位
8、(4分)如图,直线y=-x+m与直线y=nx+5n(n≠0)的交点的横坐标为-2,则关于x的不等式-x+m>nx+5n>0的整数解为( )
A.-5,-4,-3B.-4,-3C.-4,-3,-2D.-3,-2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知,如图,正方形ABCD的面积为25,菱形PQCB的面积为20,则阴影部分的面积为________.
10、(4分)已知:如图,正方形ABCD中,对角线AC和BD相交于点O.E、F分别是边AD、CD上的点,若AE=4cm,CF=3cm,且OE⊥OF,则EF的长为_____cm.
11、(4分)如图,在ABCD中,BC=2AB,CE⊥AB于E,F为AD的中点,若∠AEF=52°,则∠B的度数是________.
12、(4分)写出一个二次项系数为1,解为1与﹣3的一元二次方程:____________.
13、(4分)正方形ABCD中,,P是正方形ABCD内一点,且,则的最小值是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)计算:(1)÷-×+ ;(2)(-1)101+(π-3)0+-.
15、(8分)解不等式组:,并把它的解集在数轴上表示出来。
16、(8分)已知a,b是直角三角形的两边,且满足,求此三角形第三边长.
17、(10分)如图,矩形中,点是线段上一动点, 为的中点, 的延长线交BC于.
(1)求证: ;
(2)若,,从点出发,以l的速度向运动(不与重合).设点运动时间为,请用表示的长;并求为何值时,四边形是菱形.
18、(10分)已知四边形ABCD是菱形(四条边都相等的平行四边形).AB=4,∠ABC=60°,∠EAF的两边分别与边BC,DC相交于点E,F,且∠EAF=60°.
(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系为: .
(2)如图2,当点E是线段CB上任意一点时(点E不与B,C重合),求证:BE=CF;
(3)求△AEF周长的最小值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)要使分式有意义,则应满足的条件是
20、(4分)如图,在的边长为1的小正方形组成的网格中,格点上有四个点,若要求连接两个点所成线段的长度大于3且小于4,则可以连接__________________.(写出一个答案即可)
21、(4分)若是一元二次方程的解,则代数式的值是_______
22、(4分)已知点与点关于y轴对称,则__________.
23、(4分)将边长分别为2、3、5的三个正方形按图所示的方式排列,则图中阴影部分的面积为 .
二、解答题(本大题共3个小题,共30分)
24、(8分)计算与化简:
计算:
化简:
已知,求:的值
25、(10分)如图:,点在一条直线上,.求证:四边形是平行四边形.
26、(12分)某校举办了一次趣味数学党赛,满分100分,学生得分均为整数,这次竞赛中,甲、乙两组学生成绩如下(单位:分)
甲组:30,60,60,60,60,60,70,90,90,100
乙组:50,60,60,60,70,70,70,70,80,90.
(1)以生成绩统计分析表中a=_________分,b=_________分.
(2)小亮同学说:“这次赛我得了70分,在我们小组中属中游略偏上!”双察上面表格判断,小亮可能是甲、乙哪个组的学生?并说明理由。
(3)计算乙组成的方差,如果你是该校数学竞赛的教练员,现在需要你选一组同学代表学校参加复赛,你会进择哪一组?并说明理由。
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
因为k=−3<0,所以y随x的增大而减小.因为−1<2,所以y1>y2.
【详解】
解:∵k=﹣3<0,
∴y随x的增大而减小,
∵﹣1<2,
∴y1>y2 ,
故选A.
本题主要考查一次函数的性质.掌握k>0时y随x的增大而增大,k<0时y随x的增大而减小是解题关键.
2、A
【解析】
由正方形的性质得出∠FAD=90°,AD=AF=EF,证出∠CAD=∠AFG,由AAS证明△FGA≌△ACD,得出AC=FG,①正确;
由△AFG≌△DAC,推出四边形BCGF是矩形,②正确;
由矩形的性质和相似三角形的判定定理证出△ACD∽△FEQ,③正确.
【详解】
解:①∵四边形ADEF为正方形,
∴∠FAD=90°,AD=AF=EF,
∴∠CAD+∠FAG=90°,
∵FG⊥CA,
∴∠GAF+∠AFG=90°,
∴∠CAD=∠AFG,
在△FGA和△ACD中,,
∴△FGA≌△ACD(AAS),
∴AC=FG.
故正确;
②∵BC=AC,
∴FG=BC,
∵∠ACB=90°,FG⊥CA,
∴FG∥BC,
∴四边形CBFG是矩形.
故正确;
③∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,
∴△ACD∽△FEQ.
故正确.
综上所述,正确的结论是①②③.
故选A.
本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.
3、D
【解析】
分析:根据二次根式的运算一一判断即可.
详解:A. 故错误.
B.故错误.
C.,故错误.
D.正确.
故选D.
点睛:考查二次根式的运算,根据运算法则进行运算即可.
4、D
【解析】
根据最简二次根式的条件:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式进行分析即可.
【详解】
解:A、是最简二次根式,不符合题意;
B、是最简二次根式,不符合题意;
C、是最简二次根式,不符合题意;
D、不是最简二次根式,符合题意;
故选:D.
此题主要考查了最简二次根式,关键是掌握最简二次根式的条件.
5、C
【解析】
设Rt△ABC的第三边长为x,①当4为直角三角形的直角边时,x为斜边,由勾股定理得,x==5,此时这个三角形的周长=3+4+5=12;②当4为直角三角形的斜边时,x为直角边,由勾股定理得,x=,此时这个三角形的周长=3+4+=7+.故选C
6、C
【解析】
根据二次根式的乘法法则成立的条件:a≥0且b≥0,即可确定.
解:根据题意得:,
解得:x≥1.x≥– 1,
故答案是:x≥1.
“点睛”本题考查了二次根式的乘法法则,理解二次根式有意义的条件是关键.
7、C
【解析】
按“左加右减括号内,上加下减括号外”的规律平移即可得出所求函数的解析式.
【详解】
依题意可知,原抛物线顶点坐标为(7,3),平移后抛物线顶点坐标为(0,t)(t为常数),则原抛物线向左平移7个单位即可.
故选C.
本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶点式y=a(x-h)2+k (a,b,c为常数,a≠0),确定其顶点坐标(h,k),在原有函数的基础上“h值正右移,负左移; k值正上移,负下移”.
8、B
【解析】
根据一次函数图像与不等式的性质即可求解.
【详解】
直线y=nx+5n中,令y=0,得x=-5
∵两函数的交点横坐标为-2,
∴关于x的不等式-x+m>nx+5n>0的解集为-5<x<-2
故整数解为-4,-3,故选B.
此题主要考查一次函数与不等式的关系,解题的关键是熟知一次函数的图像与性质.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
由题意易得AB=BC=BP=PQ=QC=5,EC=4,在Rt△QEC中,可根据勾股定理求得EQ=3,又有PE=PQ-EQ=2,进而可得S阴影的值.
【详解】
∵正方形ABCD的面积是25,
∴AB=BC=BP=PQ=QC=5,
又∵S菱形PQCB=PQ×EC=5×EC=20,
∴S菱形PQCB=BC•EC,
即20=5•EC,
∴EC=4,
在Rt△QEC中,EQ==3;
∴PE=PQ-EQ=2,
∴S阴影=S正方形ABCD-S梯形PBCE=25-×(5+2)×4=25-14=1.
故答案为1.
此题主要考查了菱形的性质和面积计算以及正方形的性质,根据已知得出EC=8,进而求出EQ的长是解题关键.
10、1
【解析】
试题解析:连接EF,
∵OD=OC,
∵OE⊥OF
∴∠EOD+∠FOD=90°
∵正方形ABCD
∴∠COF+∠DOF=90°
∴∠EOD=∠FOC
而∠ODE=∠OCF=41°
∴△OFC≌△OED,
∴OE=OF,CF=DE=3cm,则AE=DF=4,
根据勾股定理得到EF==1cm.
故答案为1.
11、76º
【解析】
过F作AB、CD的平行线FG,由于F是AD的中点,那么G是BC的中点,即Rt△BCE斜边上的中点,由此可得BC=2EG=2FG,即△GEF、△BEG都是等腰三角形,因此求∠B的度数,只需求得∠BEG的度数即可;易知四边形ABGF是平行四边形,得∠EFG=∠AEF,由此可求得∠FEG的度数,即可得到∠AEG的度数,根据邻补角的定义可得∠BEG的值,由此得解.
【详解】
过F作FG∥AB∥CD,交BC于G;
则四边形ABGF是平行四边形,所以AF=BG,即G是BC的中点;
∵BC=2AB,F为AD的中点,
∴BG=AB=FG=AF,
连接EG,在Rt△BEC中,EG是斜边上的中线,
则BG=GE=FG=BC;
∵AE∥FG,
∴∠EFG=∠AEF=∠FEG=52°,
∴∠AEG=∠AEF+∠FEG=104°,
∴∠B=∠BEG=180°-104°=76°.
考查了平行四边形的性质、直角三角形的性质以及等腰三角形的判定和性质,正确地构造出与所求相关的等腰三角形是解决问题的关键.
12、x2+2x﹣3=0.
【解析】
用因式分解的形式写出方程,再化为一般形式即可
【详解】
解:(x-1)(x+3)=0,
即x2+2x-3=0,
故答案为:x2+2x-3=0
本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.
13、
【解析】
根据正方形性质,当A,P,C在同一直线上时,PC+PA是值小.
【详解】
当A,P,C在同一直线上时,PC+PA是值小.
因为,四边形ABCD 是正方形,
所以,AC= .
故答案为
本题考核知识点:正方形性质,勾股定理. 解题关键点:利用两点之间线段最短解决问题.
三、解答题(本大题共5个小题,共48分)
14、(1) (2)
【解析】
根据二次根式的性质化简,再合并同类二次根式即可.
根据乘方、0指数幂、负整数指数幂及二次根式的性质化简后,再合并即可.
【详解】
(1)÷-×+=
(2)(-1)101+(π-3)0+-=
本题考查的是二次根式的性质及实数的运算,掌握二次根式的性质及乘方、0指数幂、负整数指数幂是关键.
15、-2
分别求出每一个不等式的解集,再找出两个解集的公共部分即不等式组的解集,再将它的解集在数轴上表示。
【详解】
解:不等式2x-3≥3(x-2)的解集是:x≤3
不等式<的解集是:x>-2
所以原不等式组的解集是:-2
本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
16、3或
【解析】
分析:先把右边的项移到左边,,根据完全平方公式变形为,根据算术平方根的非负性和偶次方的非负性列方程求出a、b的值,然后分两种情况利用勾股定理求第三边的长.
详解:由=8b-b2-16,
得-8b+b2+16=0,
得+(b-4)2=0.
又∵≥0,且(b-4)2≥0,
∴a-5=0,b-4=0,
∴a=5,b=4,
当a、b为直角边时,
第三边=;
当a为斜边时,
第三边=;
点睛:本题考查了算术平方根的非负性,偶次方的非负性,完全平方公式,勾股定理及分类讨论的数学思想. 分两种情况求解是正确解答本题的关键.
17、 (1)证明见解析;(2) PD=8-t,运动时间为秒时,四边形PBQD是菱形.
【解析】
(1)先根据四边形ABCD是矩形,得出AD∥BC,∠PDO=∠QBO,再根据O为BD的中点得出△POD≌△QOB,即可证得OP=OQ;
(2)根据已知条件得出∠A的度数,再根据AD=8cm,AB=6cm,得出BD和OD的长,再根据四边形PBQD是菱形时,利用勾股定理即可求出t的值,判断出四边形PBQD是菱形.
【详解】
(1)∵四边形ABCD是矩形,
∴AD∥BC,
∴∠PDO=∠QBO,
又∵O为BD的中点,
∴OB=OD,
在△POD与△QOB中,
,
∴△POD≌△QOB,
∴OP=OQ;
(2)PD=8-t,
∵四边形PBQD是菱形,
∴BP=PD= 8-t,
∵四边形ABCD是矩形,
∴∠A=90°,
在Rt△ABP中,由勾股定理得:AB2+AP2=BP2,
即62+t2=(8-t)2,
解得:t=,
即运动时间为秒时,四边形PBQD是菱形.
本题考查了矩形的性质,菱形的性质,全等三角形的判定与性质,勾股定理等,熟练掌握相关知识是解题关键.注意数形结合思想的运用.
18、(1)AE=EF=AF;(2)详见解析;(3)6.
【解析】
(1)结论AE=EF=AF.只要证明AE=AF即可证明△AEF是等边三角形;
(2)欲证明BE=CF,只要证明△BAE≌△CAF即可;
(3)根据垂线段最短可知;当AE⊥BC时,△AEF的周长最小;
【详解】
(1)AE=EF=AF.
理由:如图1中,连接AC,
∵四边形ABCD是菱形,∠B=60°,
∴AB=BC=CD=AD,∠B=∠D=60°,
∴△ABC,△ADC是等边三角形,
∴∠BAC=∠DAC=60°
∵BE=EC,
∴∠BAE=∠CAE=30°,AE⊥BC,
∵∠EAF=60°,
∴∠CAF=∠DAF=30°,
∴AF⊥CD,
∴AE=AF(菱形的高相等)
∴△AEF是等边三角形,
∴AE=EF=AF.
故答案为AE=EF=AF;
(2)证明:如图2,
∵∠BAC=∠EAF=60°,
∴∠BAE=∠CAF,
在△BAE和△CAF中,
∴△BAE≌△CAF(ASA)
∴BE=CF.
(3)由(1)可知△AEF是等边三角形,
∴当AE⊥BC时,AE的长最小,即△AEF的周长最小,
∵AE=EF=AF=2,
∴△AEF的周长为6.
本题考查四边形综合题、菱形的性质、等边三角形的判定、全等三角形的判定和性质等知识,解题的关键是灵活应用这些知识解决问题,学会添加常用辅助线,属于中考压轴题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、≠1
【解析】
根据题意得:-1≠0,即≠1.
20、或
【解析】
根据勾股定理求出AD(或BD),根据算术平方根的大小比较方法解答.
【详解】
由勾股定理得,AD=,
3<<4,
(同理可求BD=)
故答案为:AD或BD.
本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.
21、-3
【解析】
将代入到中即可求得的值.
【详解】
解:是一元二次方程的一个根,
,
.
故答案为:.
此题主要考查了一元二次方程的解(根的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.
22、-1
【解析】
根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”求出a、b的值,然后相加即可得解.
【详解】
∵点P(a,−4)与点Q(−3,b)关于y轴对称,
∴a=3,b=−4,
∴a+b=3+(−4)=−1.
故答案为:−1.
考查关于y轴对称的点的坐标特征:纵坐标不变,横坐标互为相反数.
23、
【解析】
因为阴影部分的面积=S正方形BCQW﹣S梯形VBCF,根据已知求得梯形的面积即不难求得阴影部分的面积了.
解:∵VB∥ED,三个正方形的边长分别为2、3、5,
∴VB:DE=AB:AD,即VB:5=2:(2+3+5)=1:5,
∴VB=1,
∵CF∥ED,
∴CF:DE=AC:AD,即CF:5=5:10
∴CF=2.5,
∵S梯形VBFC=(BV+CF)•BC=,
∴阴影部分的面积=S正方形BCQW﹣S梯形VBCF=.
故答案为.
二、解答题(本大题共3个小题,共30分)
24、(1);(2);(3)2.
【解析】
(1)根据二次根式的化简、零指数幂及负指数幂计算即可;
(2)先算括号里分式的减法,再将除法转化为乘法约分即可;
(3)先将分式的分子和分母因式分解再将除法转化为乘法计算,最后算加法,化简后将代入求解即可.
【详解】
解:(1)
;
(2)
;
(3)
当时,原式.
本题考查了指数幂的计算及分式的加减乘除混合运算,熟练掌握零指数幂及负指数幂的计算公式及分式加减乘除运算的法则是解题的关键.
25、详见解析
【解析】
根据“HL”判断证明,根据等角的补角相等得可判断,再根据一组对边平行且相等的四边形是平行四边形可证明四边形BCDF是平行四边形.
【详解】
,
∴AC+CF=EF+CF
,
又,
,
,
,
,
,
∴四边形是平行四边形.
本题考查了直角三角形的全等判定与性质以及平行四边形的判定,关键是灵活运用性质和判定解决问题.
26、(1)60,68;(2)小亮在甲组;(3)乙组的方差是116;乙组的方差小于甲组,选乙组同学代表学校参加复赛.
【解析】
(1)根据中位数和平均数的计算公式分别进行解答即可求出a,b的值;
(2)根据中位数的意义进行判断即可;
(3)根据方差公式先求出乙组的方差,再根据方差的意义即可得出答案.
【详解】
解:(1)甲组的中位数a=(分);
乙组的平均数是:(50+60+60+60+70+70+70+70+80+90)÷10=68(分);
故答案为:60,68;
(2)根据中位数判断,甲组中位数60分,乙组中位数70分,所以小亮是在甲组.
(3)乙组的方差是:[(50-68)2+3×(60-68)2+4×(70-68)2+(80-68)2+(90-68)2]=116;
∵乙组的方差小于甲组,
∴选乙组同学代表学校参加复赛.
本题考查了平均数、中位数及方差,熟练掌握平均数、中位数及方差的定义是解题的关键.
题号
一
二
三
四
五
总分
得分
组别
平均分
中位数
方差
甲组
68
a
376
乙组
b
70
广东省茂名市直属学校2024-2025学年数学九年级第一学期开学质量跟踪监视模拟试题【含答案】: 这是一份广东省茂名市直属学校2024-2025学年数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,四象限B.第一,解答题等内容,欢迎下载使用。
2025届重庆市綦江区九年级数学第一学期开学质量跟踪监视模拟试题【含答案】: 这是一份2025届重庆市綦江区九年级数学第一学期开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年重庆市兼善教育集团九上数学开学质量跟踪监视模拟试题【含答案】: 这是一份2024-2025学年重庆市兼善教育集团九上数学开学质量跟踪监视模拟试题【含答案】,共18页。试卷主要包含了选择题,第四象限,解答题等内容,欢迎下载使用。