重庆市北岸区2024年九年级数学第一学期开学经典模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知一次函数y=(2m﹣1)x+3,如果函数值y随x的增大而减小,那么m的取值范围为( )
A.m<2B.C.D.m>0
2、(4分)用配方法解方程,变形后的结果正确的是( )
A.B.C.D.
3、(4分)在长度为1的线段上找到两个黄金分割点P,Q,则PQ=( )
A.B.C.D.
4、(4分)施工队要铺设米的下水管道,因在中考期间需停工天,每天要比原计划多施工米才能按时完成任务.设原计划每天施工米,所列方程正确的是( )
A.B.
C.D.
5、(4分)下列方程中有一根为3的是( )
A.x2=3B.x2﹣4x﹣3=0
C.x2﹣4x=﹣3D.x(x﹣1)=x﹣3
6、(4分)若分式的值等于0,则的取值是( ).
A.B.C.D.
7、(4分)重庆、昆明两地相距700km.渝昆高速公路开通后,在重庆、昆明两地间行驶的长途客车平均速度提高了25km/h,而从重庆地到昆明的时间缩短了3小时.求长途客车原来的平均速度.设长途客车原来的平均速度为x km/h,则根据题意可列方程为( )
A.B.
C.D.
8、(4分)如图,在▱ABCD中,∠ODA=90°,AC=10cm,BD=6cm,则BC的长为( )
A.4cmB.5cmC.6cmD.8cm
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若反比例函数y=的图象经过点(2,﹣3),则k=_____.
10、(4分)最简二次根式与是同类二次根式,则a的取值为__________.
11、(4分)每张电影票的售价为10元,某日共售出x张票,票房收入为y元,在这一问题中,_____是常量,_____是变量.
12、(4分)已知一次函数经过,且与y轴交点的纵坐标为4,则它的解析式为______.
13、(4分)如图,某自动感应门的正上方处装着一个感应器,离地米,当人体进入感应器的感应范围内时,感应门就会自动打开.一个身高1.6米的学生正对门,缓慢走到离门1.2米的地方时(米),感应门自动打开,则_________米.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在四边形OABC中,OA∥BC,∠OAB=90°,O为原点,点C的坐标为(2,8),点A的坐标为(26,0),点D从点B出发,以每秒1个单位长度的速度沿BC向点C运动,点E同时从点O出发,以每秒3个单位长度的速度沿折线OAB运动,当点E达到点B时,点D也停止运动,从运动开始,设D(E)点运动的时间为t秒.
(1)当t为何值时,四边形ABDE是矩形;
(2)当t为何值时,DE=CO?
(3)连接AD,记△ADE的面积为S,求S与t的函数关系式.
15、(8分)如图,在中,点,分别为边,的中点,延长到点使.
求证:四边形是平行四边形.
16、(8分)如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=BC=1,O为AC的中点,OE⊥OD交AB于点E.若AE=,则DO的长为_____________.
17、(10分)如图,小明家所在区域的部分平面示意图,请你分别以正东、正北为轴、轴正方向,在图中建立平面直角坐标系,使汽车站的坐标是,
(1)请你在图中画出所建立的平面直角坐标系;
(2)用坐标说明学校和小明家的位置;
(3)若图中小正方形的边长为,请你计算小明家离学校的距离.
18、(10分)已知直线经过点.
(1)求的值;
(2)求此直线与轴、轴围成的三角形面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在矩形中,于点,对角线、相交于点,且,,则__________.
20、(4分)已知一个多边形的每一个外角都等于,则这个多边形的边数是 .
21、(4分)计算:=________.
22、(4分)样本容量为 80,共分为六组,前四个组的频数分别为 12,13,15,16,第五组的频率 是 0.1,那么第六组的频率是_____.
23、(4分)如图,等边△ABC内有一点O,OA=3,OB=4,OC=5,以点B为旋转中心将BO逆时针旋转60°得到线段,连接,下列结论:①可以看成是△BOC绕点B逆时针旋转60°得到的;②点O与的距离为5;③∠AOB=150°;④S四边形AOBO′=6+4;⑤=6+.其中正确的结论有_____.(填正确序号)
二、解答题(本大题共3个小题,共30分)
24、(8分)在平面直角坐标系中,过点、分别作轴的垂线,垂足分别为、.
(1)求直线和直线的解析式;
(2)点为直线上的一个动点,过作轴的垂线交直线于点,是否存在这样的点,使得以、、、为顶点的四边形为平行四边形?若存在,求此时点的横坐标;若不存在,请说明理由;
(3)若沿方向平移(点在线段上,且不与点重合),在平移的过程中,设平移距离为,与重叠部分的面积记为,试求与的函数关系式.
25、(10分)物理兴趣小组位同学在实验操作中的得分情况如下表:
问:(1)这位同学实验操作得分的众数是 ,中位数是
(2)这位同学实验操作得分的平均分是多少?
(3)将此次操作得分按人数制成如图所示的扇形统计图.扇形①的圆心角度数是多少?
26、(12分)如图,在平面直角坐标系 中,直线 与 轴,轴分别交于点 ,点 。
(1)求点和点的坐标;
(2)若点 在 轴上,且 求点的坐标。
(3)在轴是否存在点 ,使三角形 是等腰三角形,若存在。请求出点坐标,若不存在,请说明理由。
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据一次函数的性质,当函数值y随自变量x的增大而减小时,那么k<0,由此可得不等式2m﹣1<0,解不等式即可求得m的取值范围.
【详解】
∵函数值y随自变量x的增大而减小,
∴2m﹣1<0,
∴m<.
故选C.
本题考查了一次函数的性质,熟练运用一次函数的性质是解决问题的关键.
2、A
【解析】
方程移项后,配方得到结果,即可作出判断.
【详解】
解:方程移项得:x2-8x=-9,配方得:x2-8x+16=7,即(x-4)2=7,
故选:A.
此题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键.
3、C
【解析】
【分析】先根据黄金分割的定义得出较长的线段AP=BQ=AB,再根据PQ=AP+BQ-AB,即可得出结果.
【详解】:根据黄金分割点的概念,可知AP=BQ=,
则PQ=AP+BQ-AB=
故选:C
【点睛】此题主要是考查了黄金分割的概念:把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值(
)叫做黄金比.熟记黄金分割分成的两条线段和原线段之间的关系,能够熟练求解.
4、A
【解析】
根据“原计划所用时间-实际所用时间=3”可得方程.
【详解】
解:设原计划每天施工x米,
根据题意,可列方程:,
故选择:A.
本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.
5、C
【解析】
利用一元二次方程解的定义对各选项分别进行判断.
【详解】
解:当x=3时,x2=9,所以x=3不是方程x2=3的解;
当x=3时,x2﹣4x﹣3=9﹣12﹣3=﹣6,所以x=3不是方程x2﹣4x﹣3=0的解;
当x=3时,x2﹣4x=9﹣12=﹣3,所以x=3是方程x2﹣4x=﹣3的解;
当x=3时,x(x﹣1)=6,x﹣3,0,所以x=3是方程x(x﹣1)=x﹣3的解.
故选:C.
本题考查了一元二次方程根的定义,即把根代入方程此时等式成立
6、C
【解析】
分式值为零的条件是分子等于零且分母不等于零.
【详解】
∵分式的值等于1,
∴x-2=1,x+1≠1.
解得:x=2.
故选C.
本题主要考查的是分式值为零的条件,掌握分式值为零的条件是解题的关键.
7、A
【解析】
设长途客车原来的平均速度为xkm/h,根据从重庆地到昆明的时间缩短了3小时,得出方程即可.
【详解】
解:设长途客车原来的平均速度为xkm/h,则原来从重庆地到昆明的时间为,
平均速度提高了25km/h后所花时间为,根据题意提速后所花时间缩短3个小时,
∴,
故选:A.
此题主要考查了由实际问题抽象出分式方程,根据题意得出正确等量关系是解题关键.
8、A
【解析】
利用平行四边形的性质得出AO=CO,DO=BO,再利用勾股定理得出AD的长进而得出答案.
【详解】
∵四边形ABCD是平行四边形,
∴DO=BO,AO=CO,
∵∠ODA=90°,AC=10cm,BD=6cm,
∴DO=3cm,AO=5cm,则AD=BC==4(cm)
故选;A.
此题考查平行四边形的性质,解题关键在于利用勾股定理进行求解.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、-1
【解析】
把点A(2,﹣3)代入y=求得k的值即可.
【详解】
∵反比例函数y=的图象经过点(2,﹣3),
∴﹣3=,
解得,k=﹣1,
故答案为:﹣1.
本题考查了反比例函数图象上点的坐标特征.利用待定系数法求得一次函数解析式是解题的关键.
10、
【解析】
分析:根据最简二次根式及同类二次根式的定义,令被开方数相等解方程.
详解:根据题意得,3a+1=2
解得,a=
故答案为.
点睛:此题主要考查了最简二次根式及同类二次根式的定义,正确理解同类二次根式的定义是解题的关键.
11、电影票的售价 电影票的张数,票房收入.
【解析】
根据常量,变量的定义进行填空即可.
【详解】
解:常量是电影票的售价,变量是电影票的张数,票房收入,
故答案为:电影票的售价;电影票的张数,票房收入.
本题考查了常量和变量,掌握常量和变量的定义是解题的关键.
12、y=2x+1.
【解析】
用待定系数法,把(﹣1,2),(0,1)分别代入y=kx+b,可求得k,b.
【详解】
解:把(﹣1,2),(0,1)分别代入y=kx+b得,
,
解得,
所以,y=2x+1.
故答案为y=2x+1.
本题考核知识点:待定系数法求一次函数解析式. 解题关键点:掌握求函数解析式的一般方法.
13、1.1
【解析】
过点D作DE⊥AB于点E,构造Rt△ADE,利用勾股定理求得AD的长度即可.
【详解】
解:如图,过点D作DE⊥AB于点E,
依题意知,BE=CD=1.6米,ED=BC=1.2米,AB=2.1米,
则AE=AB−BE=2.1−1.6=0.9(米).
在Rt△ADE中,由勾股定理得到:AD==1.1(米)
故答案是:1.1.
本题考查了勾股定理的应用,解题的关键是作出辅助线,构造直角三角形,利用勾股定理求得线段AD的长度.
三、解答题(本大题共5个小题,共48分)
14、 (1)t=;(2)t=6;(3)S=t2﹣13t.
【解析】
(1)根据矩形的判定定理列出关系式,计算即可;
(2)根据平行四边形的判定定理和性质定理解答;
(3)分点E在OA上和点E在AB上两种情况,根据三角形的面积公式计算即可.
【详解】
(1)∵点C的坐标为(2,8),点A的坐标为(26,0),
∴OA=26,BC=24,AB=8,
∵D(E)点运动的时间为t秒,
∴BD=t,OE=3t,
当BD=AE时,四边形ABDE是矩形,
即t=26﹣3t,
解得,t=;
(2)当CD=OE时,四边形OEDC为平行四边形,DE=OC,
即24﹣t=3t,
解得,t=6;
(3)如图1,当点E在OA上时,
AE=26﹣3t,
则S=×AE×AB=×(26﹣3t)×8=﹣12t+104,
当点E在AB上时,AE=3t﹣26,BD=t,
则S=×AE×DB=×(3t﹣26)×t=t2﹣13t.
此题考查四边形综合题,解题关键在于利用矩形的判定定理和平行四边形的判定定理和性质来解答
15、证明见解析.
【解析】
根据中位线的性质得到,再得到,故可证明.
【详解】
解:∵,分别为,的中点,
∴EF是△ABC的中位线,
∴.
∵,
∴.
∴
∴四边形是平行四边形.
此题主要考查平行四边形的判定,解题的关键是熟知三角形的中位线定理及平行四边形的判定方法.
16、
【解析】
求出△DAO≌△EBO,推出OD=OE,AD=BE,求出AD=BE=,由勾股定理得出DE2=DO2+OE2=AD2+AE2,求出即可.
【详解】
连结DE,如图,
∵∠ABC=90°,O为AC的中点,
∴∠CAB=∠ACB=45°,∠ABO=45°,AO=BO=CO,∠AOB=90°,
∵OE⊥OD,
∴∠DOE=∠AOB=90°,
∴∠DOA=∠BOE=90°-∠AOE,
∵AD∥BC,
∴∠DAB=180°-∠ABC=90°,
∴∠DAO=90°-45°=45°,
∴∠DAO=∠OBE,
在△DAO和△EBO中
∴△DAO≌△EBO(ASA),
∴OD=OE,AD=BE,
∵AB=1,AE=,
∴AD=BE=1-=,
在Rt△DAE和Rt△DOE中,由勾股定理得:DE2=DO2+OE2=AD2+AE2,
∴2DO2=()2+()2,
DO=,
故答案为:.
本题考查了等腰直角三角形性质,勾股定理,全等三角形的性质和判定的应用,解此题的关键是求出OD=OE,AD=BE,题目比较好,难度适中.
17、(1)见解析;(2)学校(-2,-2),小明家(1,2);(3)2500m
【解析】
(1)根据题意确定坐标原点的位置,然后建立坐标系;
(2)根据平面直角坐标系可以直接得到答案;
(3)利用勾股定理解答即可.
【详解】
解:(1)如图所示:
(2)学校(-2,-2) 小明家(1,2)
(3)小明家离学校的距离为:.
本题考查了坐标确定位置,熟练掌握平面直角坐标系中确定点的位置的方法是解题的关键.
18、 (1) ;(2)2.
【解析】
(1)把带入求解即可;(2)先求出一次函数y=-x+2与x轴和y轴的交点,再利用三角形的面积公式求解即可.
【详解】
(1)将点代入
得
∴
(2)
由(1)得直线解析式为
令,得到与轴交点为
令,得到与轴交点为
∴直线与两坐标轴围成的三角形面积为.
本题考查了待定系数法求一次函数解析式及三角形的面积,难度不大,属于基础题,注意细心运算即可.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
由矩形的性质可得AO=CO=BO=DO,可证△ABE≌△AOE,可得AO=AB=BO=DO,由勾股定理可求AE的长.
【详解】
在矩形中, AO=CO=BO=DO
∵,,
∴BE=EO
∵AE⊥BD
∴垂直平分.
∴AB=AO
∴AB=AO=BO
∴为等边三角形.
∴∠BAO=60°
∵AE⊥BD
∴∠BAE=30°
∴,
∴.
故答案为:
本题考查了矩形的性质,等边三角形的判定和性质,熟练运用矩形的性质是本题的关键.
20、5
【解析】
∵多边形的每个外角都等于72°,
∵多边形的外角和为360°,
∴360°÷72°=5,
∴这个多边形的边数为5.
故答案为5.
21、7
【解析】
根据平方差公式展开,再开出即可;
【详解】
=
=
=7.
故答案为7.
本题考查了二次根式的化简,主要考查学生的计算和化简能力,题目比较好,难度适中.
22、0.2.
【解析】
首先根据频率=频数÷总数,计算从第一组到第四组的频率之和,再进一步根据一组数据中,各组的频率和是1,进行计算.
【详解】
解:根据题意得:第一组到第四组的频率之和是,又因为第五组的频率是 0.1,所以第六组的频率是.
故答案为0.2.
本题考查的是频率分布直方图,这类题目主要涉及以下三个计算公式:频率=频数÷样本容量,各组的频率之和为1,各组的频数之和=样本容量.
23、①③⑤
【解析】
如图,首先证明△OBO′为等边三角形,得到OO′=OB=4,故选项②错误;证明△ABO′≌△CBO,得到选项①正确;运用勾股定理逆定理证明△AOO′为直角三角形,求出∠AOB的度数,得到选项③正确;运用面积公式求出四边形AOBO′的面积,可判断选项④错误;将△AOB绕A点逆时针旋转60°至△AO″C,可得△AOO″是边长为3的等边三角形,△COO″是边长为3,4,5的直角三角形,再根据S△AOC+S△AOB=S四边形AOCO″=S△COO″+S△AOO″进行计算即可判断选项⑤正确.
【详解】
解:如下图,连接OO′,
∵△ABC为等边三角形,
∴∠ABC=60°,AB=CB;
由题意得:∠OBO′=60°,OB=O′B,
∴△OBO′为等边三角形,∠ABO′=∠CBO,
∴OO′=OB=4;∠BOO′=60°,
∴选项②错误;
在△ABO′与△CBO中,,
∴△ABO′≌△CBO(SAS),
∴AO′=OC=5,
可以看成是△BOC绕点B逆时针旋转60°得到的,
∴选项①正确;
在△AOO′中,∵32+42=52,
∴△AOO′为直角三角形,
∴∠AOO′=90°,∠AOB=90°+60°=150°,
∴选项③正确;
∵S四边形AOBO′=×42×sin60°+×3×4=4+6,
∴选项④错误;
如下图,将△AOB绕A点逆时针旋转60°至△AO″C,连接OO″,
同理可得,△AOO″是边长为3的等边三角形,
△COO″是边长为3,4,5的直角三角形,
∴S△AOC+S△AOB
=S四边形AOCO″
=S△COO″+S△AOO″
=×3×4+×32×sin60°
=6+.
故⑤正确;
故答案为:①③⑤.
本题考查旋转的性质、三角形全等的判定和性质、等边三角形的判定和性质、勾股定理的逆定理,熟练掌握旋转的性质、等边三角形的判定和性质、勾股定理的逆定理的应用是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)y=-x+1,y=x;(2)m=或;(3)S=.
【解析】
(1)理由待定系数法即可解决问题;
(2)如图1中,设M(m,),则N(m,-m+1).当AC=MN时,A、C、M、N为顶点的四边形为平行四边形,可得|-m+1-|=3,解方程即可;
(3)如图2中,设平移中的三角形为△A′O′C′,点C′在线段CD上.设O′C′与x轴交于点E,与直线OD交于点P;设A′C′与x轴交于点F,与直线OD交于点Q.根据S=S△OFQ-S△OEP=OF•FQ-OE•PG计算即可.
【详解】
解:(1)设直线CD的解析式为y=kx+b,则有,解得,
∴直线CD的解析式为y=-x+1.
设直线OD的解析式为y=mx,则有3m=1,m=,
∴直线OD的解析式为y=x.
(2)存在.
理由:如图1中,设M(m,),则N(m,-m+1).
当AC=MN时,A、C、M、N为顶点的四边形为平行四边形,
∴|-m+1-|=3,
解得m=或.
(3)如图2中,设平移中的三角形为△A′O′C′,点C′在线段CD上.
设O′C′与x轴交于点E,与直线OD交于点P;
设A′C′与x轴交于点F,与直线OD交于点Q.
因为平移距离为t,所以水平方向的平移距离为t(0≤t<2),
则图中AF=t,F(1+t,0),Q(1+t,),C′(1+t,3-t).
设直线O′C′的解析式为y=3x+b,
将C′(1+t,3-t)代入得:b=-1t,
∴直线O′C′的解析式为y=3x-1t.
∴E(,0).
联立y=3x-1t与y=,解得x=.
∴S=S△OFQ-S△OEP=OF•FQ-OE•PG
=(1+t)()-
=.
本题考查一次函数综合题、待定系数法、函数图象上点的坐标特征、平行四边形、平移变换、图形面积计算等知识点,有一定的难度.第(2)问中,解题关键是根据平行四边形定义,得到MN=AC=3,由此列出方程求解;第(3)问中,解题关键是求出S的表达式,注意图形面积的计算方法.
25、(1)9,9;(2)8.75分;(3)54°
【解析】
(1)根据众数及中位数的定义依据表格即可得到众数,中位数;
(2)根据加权平均数的公式计算即可;
(3)利用圆心角度数=百分比乘以360°计算即可.
【详解】
(1)∵得9分的人数最多,∴得分的众数是9;
∵20个数据中第10个和第11个数据都是9,∴数据的中位数是=9,
故答案为:9,9;
(2)平均分=(分);
(3)扇形①的圆心角度数是.
此题考查统计数据的计算,正确掌握众数的定义,中位数的定义,加权平均数的计算公式,扇形圆心角度数的计算公式是解题的关键.
26、(1);(2);(3)在 轴上存在点 使为等腰三角形
【解析】
(1)分别代入y=0,x=0,求出与之对应的x,y值,进而可得出点A,B的坐标;
(2)由三角形的面积公式结合S△BOP= S△AOB,可得出OP=OA,进而可得出点P的坐标;
(3)由OA,OB的长可求出AB的长,分AB=AM,BA=BM,MA=MB三种情况,利用等腰三角形的性质可求出点M的坐标.
【详解】
解:(1)当y=0时,-2x+4=0,解得:x=2,
∴点A的坐标为(2,0);
当x=0时,y=-2x+4=4,
∴点B的坐标为(0,4).
(2))∵点P在x轴上,且S△BOP= S△AOB,
∴OP=OA=1,
∴点P的坐标为(-1,0)或(1,0).
(3))∵OB=4,OA=2,
∴AB=
分三种情况考虑(如图所示):
①当AB=AM时,OM=OB=4,
∴点M1的坐标为(0,-4);
②当BA=BM时,BM=2,
∴点M2的坐标为(0,4+2 ),点M3的坐标为(0,4-2);
③当MA=MB时,设OM=a,则BM=AM=4-a,
∴AM2=OM2+OA2,即(4-a)2=a2+22,
∴a=,
∴点M4的坐标为(0,).
综上所述:在y轴上存在点M,使三角形MAB是等腰三角形,点M坐标为(0,-4),(0,4+2),(0,4-2)和(0,).
本题考查一次函数图象上点的坐标特征、三角形的面积、勾股定理以及等腰三角形的性质,解题的关键是:(1)利用一次函数图象上点的坐标特征,求出点A,B的坐标;(2)利用两三角形面积间的关系,找出OP的长;(3)分AB=AM,BA=BM,MA=MB三种情况,利用等腰三角形的性质求出点M的坐标.
题号
一
二
三
四
五
总分
得分
批阅人
得分(分)
人数(人)
重庆市涪陵区涪陵第十九中学2025届数学九年级第一学期开学经典模拟试题【含答案】: 这是一份重庆市涪陵区涪陵第十九中学2025届数学九年级第一学期开学经典模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届成都市青羊区数学九年级第一学期开学经典模拟试题【含答案】: 这是一份2025届成都市青羊区数学九年级第一学期开学经典模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年重庆市南岸区重庆南开融侨中学九年级数学第一学期开学学业水平测试模拟试题【含答案】: 这是一份2024年重庆市南岸区重庆南开融侨中学九年级数学第一学期开学学业水平测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。