|试卷下载
终身会员
搜索
    上传资料 赚现金
    浙江省绍兴市城东东湖2024年九年级数学第一学期开学调研模拟试题【含答案】
    立即下载
    加入资料篮
    浙江省绍兴市城东东湖2024年九年级数学第一学期开学调研模拟试题【含答案】01
    浙江省绍兴市城东东湖2024年九年级数学第一学期开学调研模拟试题【含答案】02
    浙江省绍兴市城东东湖2024年九年级数学第一学期开学调研模拟试题【含答案】03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    浙江省绍兴市城东东湖2024年九年级数学第一学期开学调研模拟试题【含答案】

    展开
    这是一份浙江省绍兴市城东东湖2024年九年级数学第一学期开学调研模拟试题【含答案】,共24页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)若一次函数y=(k-3)x-k的图象经过第二、三、四象限,则k的取值范围是( )
    A.k<3B.k<0C.k>3D.0<k<3
    2、(4分)在Rt△ABC中,∠C=90°,AC=3,BC=4,则AB的长为( )
    A.3B.4C.5D.6
    3、(4分)一组数据3、-2、0、1、4的中位数是( )
    A.0B.1C.-2D.4
    4、(4分)若关于x的方程的解为负数,则m的取值范围是( )
    A.B.C.D.
    5、(4分)如图,在△ABC中,AC=BC,∠ACB=90°,AD平分∠BAC,与BC相交于点F,过点B作BE⊥AD于点D,交AC延长线于点E,过点C作CH⊥AB于点H,交AF于点G,则下列结论:⑤;正确的有( )个.
    A.1B.2C.3D.4
    6、(4分)如图所示,如果把△ABC的顶点A先向下平移3格,再向左平移1格到达A'点,连接A'B,则线段A'B与线段AC的关系是 ( )
    A.垂直B.相等C.平分D.平分且垂直
    7、(4分)下列成语描述的事件为随机事件的是( )
    A.水涨船高 B.守株待兔 C.水中捞月 D.缘木求鱼
    8、(4分)多项式与多项式的公因式是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形中,,,则的长为_______________.
    10、(4分)Rt△ABC与直线l:y=﹣x﹣3同在如图所示的直角坐标系中,∠ABC=90°,AC=2,A(1,0),B(3,0),将△ABC沿x轴向左平移,当点C落在直线l上时,线段AC扫过的面积等于_____.
    11、(4分)如图,线段AC、BD交于点O,请你添加一个条件:________,使△AOB∽△COD.
    12、(4分)在中,,有一个锐角为,.若点在直线上(不与点、重合),且,则的长是___________
    13、(4分)一个多边形的各内角都等于,则这个多边形的边数为______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,四边形ABCD, AB//DC, ∠B=55,∠1=85,∠2=40
    (1)求∠D的度数:
    (2)求证:四边形ABCD是平行四边形
    15、(8分)如图,四边形ABCD为菱形,E为对角线AC上的一个动点,连结DE并延长交射线AB于点F,连结BE.
    (1)求证:∠AFD=∠EBC;
    (2)若∠DAB=90°,当△BEF为等腰三角形时,求∠EFB的度数.
    16、(8分)如图,矩形ABCD中,对角线AC与BD相交于点O.
    (1)写出与相反的向量______;
    (2)填空:++=______;
    (3)求作:+(保留作图痕迹,不要求写作法).
    17、(10分)如图,在边长为1的小正方形网格中,△AOB的顶点均在格点上,
    (1)将△AOB向右平移4个单位长度得到△A1O1B1,请画出△A1O1B1;
    (2)以点A为对称中心,请画出△ AOB关于点A成中心对称的△ A O2 B2,并写点B2的坐标;
    (1)以原点O为旋转中心,请画出把△AOB按顺时针旋转90°的图形△A2 O B1.
    18、(10分)端午节前夕,小东妈妈准备购买若干个粽子和咸鸭蛋(每个棕子的价格相同,每个咸鸭蛋的价格相同).已知某超市粽子的价格比咸鸭蛋的价格贵1.8元,小东妈妈发现,花30元购买粽子的个数与花12元购买的咸鸭蛋个数相同.
    (1)求该超市粽子与咸鸭蛋的价格各是多少元?
    (2)小东妈妈计划购买粽子与咸鸭蛋共18个,她的一张购物卡上还有余额40元,若只用这张购物卡,她最多能购买粽子多少个?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在中,,,,点,都在边上,的平分线垂直于,垂足为,的平分线垂直于,垂足为,则的长__________.
    20、(4分)已知P1(x1,y1),P2(x2 ,y2)两点都在反比例函数的图象上,且x1< x2 < 0,则y1 ____ y2.(填“>”或“<”)
    21、(4分)如图是小强根据全班同学喜爱四类电视节目的人数而绘制的两幅不完整的统计图,则喜爱“体育”节目的人数是_____人.
    22、(4分)如图,△ABC中,已知AB=8,∠C=90°,∠A=30°,DE是中位线,则DE的长为_____.
    23、(4分)往如图所示的地板中随意抛一颗石子(石子看作一个点),石子落在阴影区域的概率为___________
    二、解答题(本大题共3个小题,共30分)
    24、(8分)用适当方法解方程:
    (1)
    (2)
    25、(10分)如图,在□ABCD中,E、F分别是AB、DC边上的点,且AE=CF,
    (1)求证:≌.
    (2)若DEB=90,求证四边形DEBF是矩形.
    26、(12分)如图1,正方形ABCD的边长为4,对角线AC、BD交于点M.
    (1)直接写出AM= ;
    (2)P是射线AM上的一点,Q是AP的中点,设PQ=x.
    ①AP= ,AQ= ;
    ②以PQ为对角线作正方形,设所作正方形与△ABD公共部分的面积为S,用含x的代数式表示S,并写出相应的x的取值范围.(直接写出,不需要写过程)
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    由一次函数图象经过第二、三、四象限,利用一次函数图象与系数的关系,即可得出关于k的一元一次不等式组,解之即可得出结论.
    【详解】
    ∵一次函数y=(k-3)x-k的图象经过第二、三、四象限,
    ∴,
    解得:0<k<3,
    故选:D.
    本题考查了一次函数图象与系数的关系,牢记“k<0,b<0⇔y=kx+b的图象在二、三、四象限”是解题的关键.
    2、C
    【解析】
    ∠C=90°,AC=3,BC=4,,
    所以AB=5.故选C.
    3、B
    【解析】
    将这组数据从小到大重新排列后为-2、 0、1、3、4;最中间的那个数1即中位数.
    【详解】
    解:将这组数据从小到大重新排列后为-2、 0、1、3、4;最中间的那个数1即中位数.
    故选:B
    本题考查中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.
    4、B
    【解析】
    先把m当作已知条件求出x的值,再根据x的值是负数列出关于m的不等式,求出m的取值范围即可.
    【详解】
    解:∵1x-m=1+x,
    ∴x=,
    ∵关于x的方程1x-m=1+x的解是负数,
    ∴<0,
    解得m<-1.
    故选:B.
    本题考查的是解一元一次不等式,熟知不等式的基本性质是解答此题的关键.
    5、D
    【解析】
    ①②正确,只要证明△BCE≌△ACF,△ADB≌△ADE即可解决问题;
    ③正确,只要证明GB=GA,得到△BDG是等腰直角三角形,即可得到;
    ④正确,求出∠CGF=67.5°=∠CFG,则CF=CG=CE,然后AE=AC+CE=BC+CG,即可得到结论;
    ⑤错误,作GM⊥AC于M.利用角平分线的性质定理即可证明;
    【详解】
    解:∵AD⊥BE,
    ∴∠FDB=∠FCA=90°,
    ∵∠BFD=∠AFC,
    ∴∠DBF=∠FAC,
    ∵∠BCE=∠ACF=90°,BC=AC,
    ∴△BCE≌△ACF,
    ∴EC=CF,AF=BE,故①正确,
    ∵∠DAB=∠DAE,AD=AD,∠ADB=∠ADE=90°,
    ∴△ADB≌△ADE,
    ∴BD=DE,
    ∴AF=BE=2BD,故②正确,
    如图,连接BG,
    ∵CH⊥AB,AC=AB,
    ∴BH=AH,∠BHG=∠AHG=90°
    ∵HG=HG,
    ∴△AGH≌△BGH,
    ∴BG=AG,∠GAH=∠GBH=22.5°,
    ∴∠DGB=∠GAH+∠GBH=45°,
    ∴△BDG是等腰直角三角形,
    ∴BD=DG=DE;故③正确;
    由△ACH是等腰直角三角形,
    ∴∠ACG=45°,
    ∴∠CGF=45°+22.5°=67.5°,
    ∵∠CFG=∠DFB=90°-22.5°=67.5°,
    ∴∠CGF=∠CFG,
    ∴CG=CF,
    ∵AB=AE,BC=AC,CE=CF=CG,
    又∵AE=AC+CE,
    ∴AB=BC+CG,故④正确;
    作GM⊥AC于M,
    由角平分线性质,GH=GM,
    ∴△AGH≌△AGM(HL),
    ∴△AGH的面积与△AGM的面积相等,
    故⑤错误;
    综合上述,正确的结论有:①②③④;
    故选择:D.
    本题考查全等三角形的判定和性质、直角三角形斜边中线的性质、等腰直角三角形的性质、角平分线的性质定理等知识,解题的关键是熟练掌握基本知识,属于中考选择题中的压轴题.
    6、D
    【解析】
    先根据题意画出图形,再利用勾股定理结合网格结构即可判断线段A′B与线段AC的关系.
    【详解】
    解:如图,将点A先向下平移3格,再向左平移1格到达A′点,连接A′B,与线段AC交于点O.
    ∵A′O=OB=,AO=OC=2,
    ∴线段A′B与线段AC互相平分,
    又∵∠AOA′=45°+45°=90°,
    ∴A′B⊥AC,
    ∴线段A′B与线段AC互相垂直平分.
    故选D.
    本题考查了平移的性质,勾股定理,正确利用网格求边长长度及角度是解题的关键.
    7、B
    【解析】试题解析:水涨船高是必然事件,A不正确;
    守株待兔是随机事件,B正确;
    水中捞月是不可能事件,C不正确
    缘木求鱼是不可能事件,D不正确;
    故选B.
    考点:随机事件.
    8、A
    【解析】
    试题分析:把多项式分别进行因式分解,多项式=m(x+1)(x-1),多项式=,因此可以求得它们的公因式为(x-1).
    故选A
    考点:因式分解
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、4
    【解析】
    首先由对边分别平行可判断四边形ABCD为平行四边形,连接AC和BD,过A点分别作DC和BC的垂线,垂足分别为F和E,通过证明△ADF≌△ABC来证明四边形ABCD为菱形,从而得到AC与BD相互垂直平分,再利用勾股定理求得BD长度.
    【详解】
    解:连接AC和BD,其交点为O,过A点分别作DC和BC的垂线,垂足分别为F和E,
    ∵AB∥CD,AD∥BC,
    ∴四边形ABCD为平行四边形,
    ∴∠ADF=∠ABE,
    ∵两纸条宽度相同,
    ∴AF=AE,

    ∴△ADF≌△ABE,
    ∴AD=AB,
    ∴四边形ABCD为菱形,
    ∴AC与BD相互垂直平分,
    ∴BD=
    故本题答案为:4
    本题考察了菱形的相关性质,综合运用了三角形全等和勾股定理,注意辅助线的构造一定要从相关条件以及可运用的证明工具入手,不要盲目作辅助线.
    10、1
    【解析】
    根据题意作出图形,利用勾股定理求出BC,求出C’的坐标,再根据矩形的面积公式即可求解.
    【详解】
    解:∵∠ABC=90°,AC=2,A(1,0),B(3,0),
    ∴AB=2,
    ∴BC==4,
    ∴点C的坐标为(3,4),
    当y=4时,4=﹣x﹣3,得x=﹣7,
    ∴C′(﹣7,4),
    ∴CC′=10,
    ∴当点C落在直线l上时,线段AC扫过的面积为:10×4=1,
    故答案为:1.
    此题主要考查平移的性质,解题的关键是熟知一次函数的图像与性质.
    11、OB=OD.(答案不唯一)
    【解析】
    AO=OC,有一对对顶角∠AOB与∠COD,添加OB=OD,即得结论.
    【详解】
    解: ∵OA=OC,∠AOB=∠COD(对顶角相等),OB=OD,
    ∴△ABO≌△CDO(SAS).
    故答案为:OB=OD.(答案不唯一)
    本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
    12、或或
    【解析】
    分及两种情况:当时,由三角形内角和定理结合可得出为等边三角形,利用等边三角形的性质可求出的长;当时,通过解直角三角形可求出,的长,再由或可求出的长.综上,此题得解.
    【详解】
    解:I.当时,如图1所示.
    ,,

    为等边三角形,

    II.当时,如图2所示.
    在中,,,
    ,.
    在中,,

    或.
    故答案为12或或.
    本题考查了含30度角的直角三角形、解直角三角形以及等边三角形的判定与性质,分及两种情况,求出的长是解题的关键.
    13、6
    【解析】
    由题意,这个多边形的各内角都等于,则其每个外角都是,再由多边形外角和是求出即可.
    【详解】
    解:∵这个多边形的各内角都等于,∴其每个外角都是,∴多边形的边数为,故答案为6.
    本题考查了多边形的外角和,准确掌握多边形的有关概念及多边形外角和是是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)55º;(2)见解析.
    【解析】
    【分析】(1)根据三角形内角和为180°,可得结果;(2)根据平行线性质求出∠ACB
    =85°,由∠ACB=∠1=85°得AD∥BC.两组对边平行的四边形是平行四边形.
    【详解】(1)解∵∠D+∠2+∠1=180°,
    ∴∠D=180°-∠2-∠1
    =180°-40°-85°=55°.
    (2)证明:∵AB∥DC,
    ∴∠2+∠ACB+∠B=180°.
    ∴∠ACB=180°-∠B-∠2
    =180°-55°-40°=85°.
    ∵∠ACB=∠1=85°,
    ∴AD∥BC.
    又∵AB∥DC
    ∴四边形ABCD是平行四边形.
    【点睛】此题考核知识点:三角形内角和性质;平行线性质;平行四边形判定.解题关键:根据所求,算出必要的角的度数,由角的特殊关系判定边的位置关系.此题比较直观,属基础题.
    15、 (1)见解析;(2) ∠EFB=30°或120°.
    【解析】
    (1)直接利用全等三角形的判定方法得出△DCE≌△BCE(SAS),即可得出答案;
    (2)利用正方形的性质结合等腰三角形的性质得出:①当F在AB延长线上时;②当F在线段AB上时;分别求出即可.
    【详解】
    (1)证明:∵四边形ABCD是菱形,
    ∴CD=AB,∠ACD=∠ACB,
    在△DCE和△BCE中

    ∴△DCE≌△BCE(SAS),
    ∴∠CDE=∠CBE,
    ∵CD∥AB,
    ∴∠CDE=∠AFD,
    ∴∠EBC=∠AFD.
    (2)分两种情况,
    ①如图1,当F在AB延长线上时,
    ∵∠EBF为钝角,
    ∴只能是BE=BF,设∠BEF=∠BFE=x°,
    可通过三角形内角形为180°得:90+x+x+x=180,
    解得:x=30,
    ∴∠EFB=30°.
    ②如图2,当F在线段AB上时,
    ∵∠EFB为钝角,
    ∴只能是FE=FB,设∠BEF=∠EBF=x°,则有∠AFD=2x°,
    可证得:∠AFD=∠FDC=∠CBE,
    得x+2x=90,
    解得:x=30,
    ∴∠EFB=120°.
    综上:∠EFB=30°或120°.
    此题主要考查了菱形的性质以及正方形的性质以及全等三角形的判定与性质等知识,利用分类讨论得出是解题关键.
    16、 (1) ,;(2);(3)见解析.
    【解析】
    (1)观察图形直接得到结果;
    (2)由+=,+=即可得到答案;
    (3)根据平行四边形法则即可求解.
    【详解】
    解:(1)与相反的向量有,.
    (2)∵+=,+=,
    ∴++=.
    (3)如图,作平行四边形OBEC,连接AE,即为所求.
    故答案为(1) ,;(2);(3)见解析.
    本题考查了平面向量,平面向量知识在初中数学教材中只有沪教版等极少数版本中出现.
    17、(1)如图所示:△A1O1B1为所求作的三角形;见解析;(2)如图所示:为所求作的三角形,见解析;(-1,4);(1)如图所示:为所求作的三角形;见解析.
    【解析】
    (1)先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形;
    (2)关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分得特点,找到关键点的对应点,再顺次连接对应点即可得到平移后的图形;关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,即可得到B点的坐标;
    (1)先将A,B,O以原点O为旋转中心, 顺时针旋转90°,得到对应点A2O, B1,最后顺次连接,顺次连接得出旋转后的图形.
    【详解】
    解:(1)如图所示:先将A,B,O三点向右平移4个单位长度,得到A1 ,O1, B1,最后顺次连接,即可得到:为所求作的三角形;
    (2)如图所示:先将A,B,O以点A为对称中心,得到A,O2, B2最后顺次连接,即可得到:为所求作的三角形,(-1,4);
    (1)如图所示:先将A,B,O以原点O为旋转中心, 顺时针旋转90°,得到A2,O, B1,最后顺次连接,即可得到:为所求作的三角形;
    本题主要考查了利用旋转变换,平移变换以及中心对称进行作图,解题时注意:关于x轴的对称点的横坐标不变,纵坐标互为相反数.关于y轴的对称点的横坐标互为相反数,纵坐标不变.
    18、(1)咸鸭蛋的价格为1.2元,粽子的价格为3元(2)她最多能购买粽子10个
    【解析】
    (1)设咸鸭蛋的价格为x元,则粽子的价格为(1.8+x)元,根据花30元购买粽子的个数与花12元购买咸鸭蛋的个数相同,列出分式方程,求出方程的解得到x的值,即可得到结果.
    (2)设小东妈妈能购买粽子y个,根据题意列出不等式解答即可.
    【详解】
    (1)设咸鸭蛋的价格为x元,则粽子的价格为(1.8+x)元,
    根据题意得:,
    去分母得:30x=12x+21.6,
    解得:x=1.2,
    经检验x=1.2是分式方程的解,且符合题意,
    1.8+x=1.8+1.2=3(元),
    故咸鸭蛋的价格为1.2元,粽子的价格为3元.
    (2)设小东妈妈能购买粽子y个,根据题意可得:3y+1.2(18﹣y)≤40,
    解得:y≤,
    因为y取整数,
    所以y的最大值为10,
    答:她最多能购买粽子10个
    此题考查了分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.航行问题常用的等量关系为:花30元购买粽子的个数与花12元购买咸鸭蛋的个数相同.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    证明△ABQ≌△EBQ,根据全等三角形的性质得到BE=AB=5,AQ=QE,同理可求CD=AC=7,AP=PD,根据三角形中位线定理计算即可.
    【详解】
    解:在△ABQ和△EBQ中,

    ∴△ABQ≌△EBQ(ASA),
    ∴BE=AB=5,AQ=QE,
    同理可求CD=AC=7,AP=PD,
    ∴DE=CD-CE=CD-(BC-BE)=2,
    ∵AP=PD,AQ=QE,
    ∴PQ=DE=1,
    故答案为:1.
    本题考查的是三角形中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
    20、>
    【解析】
    根据反比例函数的增减性,k=1>0,且自变量x<0,图象位于第三象限,y随x的增大而减小,从而可得结论.
    【详解】
    在反比例函数y=中,k=1>0,
    ∴该函数在x<0内y随x的增大而减小.
    ∵x1<x1<0,
    ∴y1>y1.
    故答案为:>.
    本题考查了反比例函数的性质,解题的关键是得出反比例函数在x<0内y随x的增大而减小.本题属于基础题,难度不大,解决该题型题目时,根据系数k的取值范围确定函数的图象增减性是关键.
    21、1
    【解析】
    试题分析:根据喜爱新闻类电视节目的人数和所占的百分比,即可求出总人数;根据总人数和喜爱动画类电视节目所占的百分比,求出喜爱动画类电视节目的人数,进一步利用减法可求喜爱“体育”节目的人数.
    5÷1%=50(人),
    50×30%=15(人),
    50﹣5﹣15﹣20=1(人).
    故答案为1.
    考点:条形统计图;扇形统计图.
    22、2
    【解析】
    先由含30°角的直角三角形的性质,得出BC,再由三角形的中位线定理得出DE即可.
    【详解】
    因为,△ABC中,∠C=90°,∠A=30°,
    所以, ,
    因为,DE是中位线,
    所以,.
    故答案为2
    本题考核知识点:直角三角形,三角形中位线. 解题关键点:熟记直角三角形性质,三角形中位线性质.
    23、
    【解析】
    求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.
    【详解】
    设最小正方形的边长为1,则小正方形边长为2,
    阴影部分面积=2×2×4+1×1×2=18,
    白色部分面积=2×2×4+1×1×2=18,
    故石子落在阴影区域的概率为.
    故答案为:.
    本题考查了概率,正确运用概率公式是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)x1=1+,x2=1−;(2)x1=-1,x2=1.
    【解析】
    (1)在本题中,把常数项-4移项后,应该在左右两边同时加上一次项系数-2的一半的平方,配方后即可解答.
    (2)利用直接开方法得到,然后解两个一次方程即可.
    【详解】
    (1)解:由原方程移项,得x2-2x=4,
    等式两边同时加上一次项系数一半的平方,得x2−2x+1=5,
    配方,得(x−1)2=5,
    ∴x=1±
    ∴x1=1+,x2=1−.
    (2)解:
    或,
    ∴x1=-1,x2=1.
    本题主要考查一元二次方程的解法,掌握解法是解题的关键.
    25、(1)利用SAS证明;(2)证明见解析.
    【解析】
    试题分析:此题考查了平行四边形的判定与性质、矩形的判定以及全等三角形的判定与性质.注意有一个角是直角的平行四边形是矩形,首先证得四边形ABCD是平行四边形是关键.(1)由在□ABCD中,AE=CF,可利用SAS判定△ADE≌△CBF.(2)由在▱ABCD中,且AE=CF,利用一组对边平行且相等的四边形是平行四边形,可证得四边形DEBF是平行四边形,又由∠DEB=90°,可证得四边形DEBF是矩形.
    试题解析:(1)∵四边形ABCD是平行四边形,
    ∴AD=CB,∠A=∠C,
    在△ADE和△CBF中,

    ∴△ADE≌△CBF(SAS).
    (2)∵四边形ABCD是平行四边形,
    ∴AB=CD,AB∥CD,
    ∵AE=CF,∴BE=DF,
    ∴四边形ABCD是平行四边形,
    ∵∠DEB=90°,∴四边形DEBF是矩形.
    故答案为(1)利用SAS证明;(2)证明见解析.
    考点:平行四边形的性质;全等三角形的判定与性质;矩形的判定.
    26、(1);(2)①2x,x;②S(0<x≤).
    【解析】
    (1)根据勾股定理可得AC=,进而根据正方形对角线相等而且互相平分,可得AM的长;
    (2)由中点定义可得AP=2PQ,AQ=PQ,然后由正方形与△ABD公共部分可得是以QM为高的等腰直角三角形,据此即可解答.
    【详解】
    解:(1)∵正方形ABCD的边长为4,
    ∴对角线AC4,
    又∴AM2.
    故答案为:2.
    (2)①Q是AP的中点,设PQ=x,
    ∴AP=2PQ=2x,AQ=x.
    故答案为:2x;x.
    ②如图:
    ∵以PQ为对角线作正方形,
    ∴∠GQM=∠FQM=45°
    ∵正方形ABCD对角线AC、BD交于点M,
    ∴∠FMQ=∠GMQ=90°,
    ∴△FMQ和△GMQ均为等腰直角三角形,
    ∴FM=QM=MG.
    ∵QM=AM﹣AQ=2x,
    ∴SFG•QM,
    ∴S,
    ∵依题意得:,
    ∴0<x≤2,
    综上所述:S(0<x≤2),
    本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角.解答本题要充分利用等腰直角三角形性质解答.
    题号





    总分
    得分
    批阅人
    相关试卷

    2025届浙江省绍兴市上虞实验中学数学九上开学调研模拟试题【含答案】: 这是一份2025届浙江省绍兴市上虞实验中学数学九上开学调研模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    浙江省绍兴市城东东湖2023-2024学年数学九年级第一学期期末联考模拟试题含答案: 这是一份浙江省绍兴市城东东湖2023-2024学年数学九年级第一学期期末联考模拟试题含答案,共8页。试卷主要包含了如图,在矩形中,,如图,一个半径为r等内容,欢迎下载使用。

    2023-2024学年浙江省绍兴市城东东湖八上数学期末考试试题含答案: 这是一份2023-2024学年浙江省绍兴市城东东湖八上数学期末考试试题含答案,共7页。试卷主要包含了计算的结果为,点P,下列各数中是无理数的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map