![长沙市重点中学2024年数学九年级第一学期开学统考试题【含答案】01](http://img-preview.51jiaoxi.com/2/3/16294945/0-1729990407406/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![长沙市重点中学2024年数学九年级第一学期开学统考试题【含答案】02](http://img-preview.51jiaoxi.com/2/3/16294945/0-1729990407420/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![长沙市重点中学2024年数学九年级第一学期开学统考试题【含答案】03](http://img-preview.51jiaoxi.com/2/3/16294945/0-1729990407435/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
长沙市重点中学2024年数学九年级第一学期开学统考试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)方程的解是
A.B.C.或D.或
2、(4分)已知正比例函数的函数值随的增大而减小,则一次函数的图象大致是( )
A.B.C.D.
3、(4分)下列命题正确的是( )
A.一组对边平行,另一组对边相等的四边形是平行四边形
B.对角线互相垂直的四边形是菱形
C.对角线相等的四边形是矩形
D.一组邻边相等的矩形是正方形
4、(4分)如图,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2017秒时点P的坐标是( )
A.(2016,0)B.(2017,1)C.(2017,-1)D.(2018,0)
5、(4分)如图所示,在▱ABCD中,分别以AB,AD为边向外作等边△ABE,△ADF,延长CB交AE于点G,点G在点A,E之间,连接CG,CF,则下列结论不一定正确的是( )
A.△CDF≌△EBC
B.∠CDF=∠EAF
C.CG⊥AE
D.△ECF是等边三角形
6、(4分)如图,函数与的图象交于点,那么关于x,y的方程组的解是
A.B.C.D.
7、(4分)若代数式有意义,则实数x的取值范围是
A. B. C. D.且
8、(4分)一次函数y=5x-4的图象经过( ).
A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)用一块长80cm,宽60cm的纸板,在四个角截去四个相同的小正方形,然后做成一个底面积为1500cm2的无盖长方体纸盒,则截去的小正方形的边长为___________.
10、(4分)三角形的两边长分别为3和6,第三边的长是方程-6x+8=0的解,则此三角形的第三边长是_____
11、(4分)已知:,则______.
12、(4分)已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m=_____.
13、(4分)某市出租车的收费标准如下:起步价5元,即千米以内(含千米)收费元,超过千米的部分,每千米收费元.(不足千米按千米计算)求车费(元)与行程(千米)的关系式________.
三、解答题(本大题共5个小题,共48分)
14、(12分)解分式方程:
(1);
(2)=1;
15、(8分)八年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名八年级学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图均不完整),请根据图中所给信息解答下列问题:
(1)在这次评价中,一共抽查了多少名学生?
(2)求扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数;
(3)请将条形统计图补充完整.
16、(8分) (1)因式分解:
(2)解不等式组:并把解集在数轴上表示出来.
17、(10分)如图,在△ABC中,.请用尺规在AC上作点P,使点P到A、B的距离相等保留作图痕迹,不写作法和证明
18、(10分)甲、乙两名射击选示在10次射击训练中的成绩统计图(部分)如图所示:
根据以上信息,请解答下面的问题;
(1)补全甲选手10次成绩频数分布图.
(2)a= ,b= ,c= .
(3)教练根据两名选手手的10次成绩,决定选甲选手参加射击比赛,教练的理由是什么?(至少从两个不同角度说明理由).
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在平面直角坐标系中,正方形、、,…,按图所示的方式放置.点、、,…和点、、,…分别在直线和轴上.已知,,则点的坐标是______.
20、(4分)小明统计了家里3月份的电话通话清单,按通话时间画出频数分布直方图(如图所示),则通话时间不足10分钟的通话次数的频率是_____.
21、(4分)平面直角坐标系中,A、O两点的坐标分别为(2,0),(0,0),点P在正比例函数y=x(x>0)图象上运动,则满足△PAO为等腰三角形的P点的坐标为_____.
22、(4分)当_____________时,在实数范围内有意义.
23、(4分)某个“清凉小屋”自动售货机出售三种饮料.三种饮料的单价分别是2元/瓶、3元/瓶、5元/瓶. 工作日期间,每天上货量是固定的,且能全部售出,其中,饮料的数量(单位:瓶)是饮料数量的2倍,饮料的数量(单位:瓶)是饮料数量的2倍. 某个周六,三种饮料的上货量分别比一个工作日的上货量增加了50%,60%,50%,且全部售出. 但是由于软件bug,发生了一起错单(即消费者按某种饮料1瓶的价格投币,但是取得了另一种饮料1瓶),结果这个周六的销售收入比一个工作日的销售收入多了403元. 则这个“清凉小屋”自动售货机一个工作日的销售收入是__________元.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知:y=y1﹣y2,y1与x2成正比例,y2与x成反比例,且x=1时,y=3;x=﹣1时y=1.
(1)求y关于x的函数关系式.
(2)求x=﹣时,y的值.
25、(10分)画出函数y=2x-1的图象.
26、(12分)为了增强学生的身体素质,某校坚持长年的全员体育锻炼,并定期进行体能测试,下面是将某班学生的立定跳远成绩(精确到0.01m),进行整理后,分成5组,画了的频率分布直方图的部分,已知:从左到右4个小组的频率分别是:0.05,0.15,0.30,0.35,第五小组的频数是1.
(1)该班参加测试的人数是多少?
(2)补全频率分布直方图.
(3)若该成绩在2.00m(含2.00)的为合格,问该班成绩合格率是多少?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
方程移项后,利用因式分解法求出解即可.
【详解】
解:(x-2)2=3(x-2),
(x-2)2-3(x-2)=0,
(x-2)(x-2-3)=0,
x-2=0,x-2-3=0,
x1=2,x2=1.
故选C.
本题考查解一元二次方程-因式分解法,熟练掌握因式分解的方法是解题的关键.
2、B
【解析】
根据自正比例函数的性质得到k<0,然后根据一次函数的性质得到一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.
【详解】
解:正比例函的函数值随的增大而减小,
,
一次函数的一次项系数大于0,常数项小于0,
一次函数的图象经过第一、三象限,且与轴的负半轴相交.
故选:.
本题考查正比例函数的性质和一次函数的图象,解题的关键是熟练掌握正比例函数的性质和一次函数的图象.
3、D
【解析】
分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.
【详解】
A、一组对边平行,另一组对边相等的四边形有可能是等腰梯形,故A选项错误;
B、对角线互相垂直的四边形也可能是一般四边形,故B选项错误;
C、对角线相等的四边形有可能是等腰梯形,故C选项错误.
D、一组邻边相等的矩形是正方形,故D选项正确.
故选:D.
本题考查特殊平行四边形的判定,需熟练掌握各特殊四边形的特点.
4、B
【解析】
试题解析:以时间为点P的下标.
观察,发现规律:P0(0,0),P1(1,1),P2(2,0),P3(3,-1),P4(4,0),P5(5,1),…,
∴P4n(n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,-1).
∵2017=504×4+1,
∴第2017秒时,点P的坐标为(2017,1).
故选B.
5、C
【解析】
A.在平行四边形ABCD中,∠ADC=∠ABC,AD=BC,CD=AB,
∵△ABE、△ADF都是等边三角形,
∴AD=DF,AB=EB,∠ADF=∠ABE=60°,
∴DF=BC,CD=BC,
∴∠CDF=360°-∠ADC-60°=300°-∠ADC,
∠EBC=360°-∠ABC-60°=300°-∠ABC,
∴∠CDF=∠EBC,
在△CDF和△EBC中,
DF=BC,
∠CDF=∠EBC,
CD=EB,
∴△CDF≌△EBC(SAS),故A正确;
B.在平行四边形ABCD中,∠DAB=180°-∠ADC,
∴∠EAF=∠DAB+∠DAF+∠BAE=180°-∠ADC+60°+60°=300°-∠ADC,
∴∠CDF=∠EAF,故B正确;
C. .当CG⊥AE时,∵△ABE是等边三角形,
∴∠ABG=30°,
∴∠ABC=180°-30°=150°,
∵∠ABC=150°无法求出,故C错误;
D. 同理可证△CDF≌△EAF,
∴EF=CF,
∵△CDF≌△EBC,
∴CE=CF,
∴EC=CF=EF,
∴△ECF是等边三角形,故D正确;
故选C.
点睛:本题考查了全等三角形的判定、等边三角形的判定和性质、平行四边形的性质等知识,综合性强.考查学生综合运用数学知识的能力.根据题意,结合图形,对选项一一求证,判定正确选项.
6、A
【解析】
利用方程组的解就是两个相应的一次函数图象的交点坐标进行判断.
【详解】
解:根据题意可得方程组的解是.
故选:A.
本题考查了一次函数与二元一次方程组:方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.
7、D
【解析】
根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须且x≠1。故选D。
8、C
【解析】
根据一次函数的性质结合k、b的值即可确定答案.
【详解】
∵k=5>0,
∴一次函数y=5x-4的图象经过第一、三象限,
∵b=-4<0,
∴一次函数y=5x-4的图象与y轴的交点在x轴下方,
∴一次函数y=5x-4的图象经过第一、三、四象限,
故选C.
本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理 直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1cm
【解析】
根据题意,将纸板的四个角截去四个相同的小正方形后,得到一个底面积为100的无盖长方体纸盒,设截去的小正方形的边长为,根据底面的面积公式,列一元二次方程求解即可.
【详解】
解:设截去的小正方形的边长为,由题意得,,
整理得,
解得.
当时,<0, <0,不符合题意,应舍去;
当时,>0,>0,符合题意,所以=1.
故截去的小正方形的边长为1cm.
故答案为:1cm
本题考查一元二次方程的应用,根据题意将无盖长方体纸盒的底面面积表示出来,列关于x的一元二次方程求解即可.
10、1
【解析】
求出方程的解,有两种情况:x=2时,看看是否符合三角形三边关系定理;x=1时,看看是否符合三角形三边关系定理;求出即可.
【详解】
解:x2-6x+8=0,
(x-2)(x-1)=0,
x-2=0,x-1=0,
x1=2,x2=1,
当x=2时,2+3<6,不符合三角形的三边关系定理,所以x=2舍去,
当x=1时,符合三角形的三边关系定理,此三角形的第三边长是1,
故答案为:1.
本题考查三角形的三边关系定理和解一元二次方程等知识点,关键是掌握三角形的三边关系定理,三角形的两边之和大于第三边.
11、
【解析】
首先根据二次根式有意义的条件和分式有意义的条件列出不等式,求出x的值,然后可得y的值,易求结果.
【详解】
解:由题意得:,
∴x=-2,
∴y=3,
∴,
故答案为:.
本题考查了二次根式和分式的性质,根据他们各自的性质求出x,y的值是解题关键.
12、1
【解析】
【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程,通过解关于m的方程求得m的值即可.
【详解】∵关于x的一元二次方程mx1+5x+m1﹣1m=0有一个根为0,
∴m1﹣1m=0且m≠0,
解得,m=1,
故答案是:1.
【点睛】本题考查了一元二次方程ax1+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.
13、
【解析】
本题是一道分段函数,当和是由收费与路程之间的关系就可以求出结论.
【详解】
由题意,得
当时,
;
当时,
,
∴,
故答案为:.
本题考查了分段函数的运用,解答时求出函数的解析式是关键.
三、解答题(本大题共5个小题,共48分)
14、 (1) 经检验x=3是分式方程的解;(2)经检验x=﹣1是分式方程的解.
【解析】
(1)根据分式方程的原则求解即可,注意分式方程的增根.
(2)根据分式方程的原则求解即可,注意分式方程的增根.
【详解】
解:(1)去分母得:3x﹣3=2x,
解得:x=3,
经检验x=3是分式方程的解;
(2)去分母得:x2+4x+4﹣4=x2﹣4,
解得:x=﹣1,
经检验x=﹣1是分式方程的解.
本题主要考查分式方程的求解,特别注意一定不能忘记分式方程根的检验.
15、(1)560人;(2)54°;(3)补图见解析.
【解析】
分析:(1)由“专注听讲”的学生人数除以占的百分比求出调查学生总数即可;
(2)由“主动质疑”占的百分比乘以360°即可得到结果;
(3)求出“讲解题目”的学生数,补全统计图即可;
详解:(1)根据题意得:224÷40%=560(名),
则在这次评价中,一个调查了560名学生;
故答案为:560;
(2)根据题意得:×360°=54°,
则在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为54度;
故答案为:54;
(3)“讲解题目”的人数为560-(84+168+224)=84,补全统计图如下:
点睛:此题考查了频率(数)分布直方图,扇形统计图,以及用样本估计总体,弄清题中的数据是解本题的关键.
16、 (1);(2) .
【解析】
(1)先提取y,再根据完全平方公式即可得到答案;
(2)先分别求出不等式组中两个不等式的解,再将答案表示的数轴上.
【详解】
(1)因式分解:
(2)解不等式组:
解:解不等式①,得
解不等式②,得
在同一数轴上表示不等式①②的解集,如图.
∴原不等式组的解集为:
本题考查因式分解、解不等式组和数轴,解题的关键是掌握因式分解、解不等式组和数轴.
17、见详解
【解析】
根据线段垂直平分线性质作图求解即可.
【详解】
解:如图,作AB的垂直平分线,交AC于P.
则PA=PB,点P为所求做的点.
本题考查尺规作图.线段垂直平分线的性质:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上 .作线段的垂直平分线是解决本题关键.
18、(1)4;(2)8、1.2、7.5;(3)从平均数看,甲成绩优于乙的成绩;从方差看,甲的方差小,说明甲的成绩稳定.
【解析】
(1)根据甲的成绩频数分布图及题意列出10﹣(1+2+2+1),计算即可得到答案;
(2)根据平均数公式、中位数的求法和方差公式计算得到答案;
(3)从平均数和方差进行分析即可得到答案.
【详解】
解:(1)甲选手命中8环的次数为10﹣(1+2+2+1)=4,
补全图形如下:
(2)a==8(环),
c=×[(6﹣8)2+2×(7﹣8)2+4×(8﹣8)2+2×(9﹣8)2+(10﹣8)2]=1.2,
b==7.5,
故答案为:8、1.2、7.5;
(3)从平均数看,甲成绩优于乙的成绩;从方差看,甲的方差小,说明甲的成绩稳定.
本题考查频数分布直方图、平均数、中位数和方差,解题的关键是读懂频数分布直方图,掌握平均数、中位数和方差的求法.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
由正方形的轴对称性,由C1、C2的坐标可求A1、A2的坐标,将A1、A2的坐标代入y=kx+b中,得到关于k与b的方程组,求出方程组的解得到k与b的值,从而求直线解析式,由正方形的性质求出OB1,OB2的长,设B2G=A3G=t,表示出A3的坐标,代入直线方程中列出关于b的方程,求出方程的解得到b的值,确定出A3的坐标.
【详解】
连接A1C1,A2C2,A3C3,分别交x轴于点E、F、G,
∵正方形A1B1C1O、A2B2C2B1、A3B3C3B2,
∴A1与C1关于x轴对称,A2与C2关于x轴对称,A3与C3关于x轴对称,
∵C1(1,-1),C2(,−),
∴A1(1,1),A2(,),
∴OB1=2OE=2,OB2=OB1+2B1F=2+2×(-2)=5,
将A1与A2的坐标代入y=kx+b中得: ,
解得: ,
∴直线解析式为y=x+,
设B2G=A3G=t,则有A3坐标为(5+t,t),
代入直线解析式得:t=(5+t)+,
解得:t=,
∴A3坐标为.
故答案是:.
考查了一次函数的性质,正方形的性质,利用待定系数法求一次函数解析式,是一道规律型的试题,锻炼了学生归纳总结的能力,灵活运用正方形的性质是解本题的关键.
20、0.7
【解析】
用通话时间不足10分钟的通话次数除以通话的总次数即可得.
【详解】
由图可知:小明家3月份通话总次数为20+15+10+5=50(次);
其中通话不足10分钟的次数为20+15=35(次),
∴通话时间不足10分钟的通话次数的频率是35÷50=0.7.
故答案为0.7.
21、(1,1)或(,)或(1,1)
【解析】
分OP=AP、OP=OA、AO=AP三种情况考虑:①当OP1=AP1时,△AOP1为等腰直角三角形,根据等腰直角三角形的性质结合点A的坐标可得出点P1的坐标;②当OP1=OA时,过点P1作P1B⊥x轴,则△OBP1为等腰直角三角形,根据等腰直角三角形的性质结合点A的坐标可得出点P1的坐标;③当AO=AP3时,△OAP3为等腰直角三角形,根据等腰直角三角形的性质结合点A的坐标可得出点P3的坐标.综上即可得出结论
【详解】
∵点A的坐标为(1,0),
∴OA=1.
分三种情况考虑,如图所示.
①当OP1=AP1时,∵∠AOP1=45°,
∴△AOP1为等腰直角三角形.
又∵OA=1,
∴点P1的坐标为(1,1);
②当OP1=OA时,过点P1作P1B⊥x轴,则△OBP1为等腰直角三角形.
∵OP1=OA=1,
∴OB=BP1=,
∴点P1的坐标为(,);
③当AO=AP3时,△OAP3为等腰直角三角形.
∵OA=1,
∴AP3=OA=1,
∴点P3的坐标为(1,1).
综上所述:点P的坐标为(1,1)或(,)或(1,1).
故答案为:(1,1)或(,)或(1,1).
本题考查了一次函数图象上点的坐标特征、等腰三角形的性质以及等腰直角三角形的性质,分OP=AP、OP=OA、AO=AP三种情况求出点P的坐标是解题的关键.
22、a≥1
【解析】
根据二次根式有意义的条件可得a-1≥0,再解不等式即可.
【详解】
由题意得:a-1≥0,
解得:a≥1,
故答案为: a≥1.
此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.
23、760
【解析】
设工作日期间C饮料数量为x瓶,则B饮料数量为2x瓶,A饮料数量为4x瓶,工作日期间一天的销售收入为:8x+6x+5x=19x元,周六C饮料数量为1.5x瓶,则B饮料数量为3.2x瓶,A饮料数量为6x瓶,周六销售销售收入为:12x+9.6x+7.5x=29.1x元,周六销售收入与工作日期间一天销售收入的差为:29.1x-19x=10.1x元,由于发生一起错单,收入的差为403元,因此,403加减一瓶饮料的差价一定是10.1的整数倍,所以这起错单发生在A、B饮料上(A、B一瓶的差价为1元),且是消费者付A饮料的钱,取走的是B饮料;于是可以列方程求出C的数量,进而求出工作日期间一天的销售收入.
【详解】
设工作日期间C饮料数量为x瓶,则B饮料数量为2x瓶,A饮料数量为4x瓶,
工作日期间一天的销售收入为:8x+6x+5x=19x元,周六C饮料数量为1.5x瓶,则B饮料数量为3.2x瓶,A饮料数量为6x瓶,周六销售销售收入为:12x+9.6x+7.5x=29.1x元,
周六销售收入与工作日期间一天销售收入的差为:29.1x-19x=10.1x元,
由于发生一起错单,收入的差为403元,因此,403加减一瓶饮料的差价一定是10.1的整数倍,
所以这起错单发生在A、B饮料上(A、B一瓶的差价为1元),且是消费者付A饮料的钱,取走的是B饮料;
于是有:10.1x-(3-2)=403
解得:x=40.
工作日期间一天的销售收入为:19×40=760元.
故答案为:760.
考查销售过程中的数量之间的关系,以及方程的整数解得问题,通过探索、推理、验证得到答案.
二、解答题(本大题共3个小题,共30分)
24、 (1)y=2x2+;(2)y=﹣.
【解析】
(1)设y1=k1x2,y2=,根据y=y1﹣y2,列出y与k1,k2和x之间的函数关系,再将x,y的已知量代入,便能求出k1,k2的值,进而得到y关于x的函数关系式.
(2)把x=-代入y关于x的函数关系式即可.
【详解】
解:(1)设y1=k1x2,y2=,
∵y=y1﹣y2,
∴y=k1 x2﹣,
把x=1,y=3代入y=k1 x2﹣得:k1﹣k2=3①,
把x=﹣1,y=1代入y=k1 x2﹣得:k1 + k2=1②,
①,②联立,解得:k1=2,k2=﹣1,
即y关于x的函数关系式为y=2x2+,
(2)把x=﹣代入y=2x2+,
解得y=﹣.
本道题主要考查了学生对待定系数法求正比例函数解析式、反比例函数解析式的熟练掌握情况,能够正确的表示出y、x的函数关系式,进而用待定系数法求得其解析式是解答此题的关键.
25、见解析.
【解析】
通过列出表格,画出函数图象即可.
【详解】
列表:
画出函数y=2x-1的图象.如图所示.
此题考查一次函数的图象,解题关键在于掌握其性质定义.
26、(1)参加测试的有60人;(2)详见解析;(3)0.2.
【解析】
(1)根据第五组的频数与频率可以求得该班参加测试的人数;
(2)根据频率分布直方图可以求得第五组的频率,从而可以将统计图补充完整;
(3)根据频率分布直方图中的数据可以求得该班成绩合格率.
【详解】
解:(1)1÷(1﹣0.05﹣0.15﹣0.30﹣0.35)=60(人)
答:参加测试的有60人;
(2)第五组的频率是:1﹣0.05﹣0.15﹣0.30﹣0.35=0.15,
补全的频率分布直方图如图所示:
(3)0.30+0.35+0.15=0.2,
答:该班成绩合格率是0.2.
本题考查频率分布直方图,解答本题的关键是明确题意,利用数形结合的思想解答.
题号
一
二
三
四
五
总分
得分
批阅人
选手
A平均数
中位数
众数
方差
甲
a
8
8
c
乙
7.5
b
6和9
2.65
吴忠市重点中学2024年九年级数学第一学期开学统考模拟试题【含答案】: 这是一份吴忠市重点中学2024年九年级数学第一学期开学统考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
本溪市重点中学2024年九年级数学第一学期开学统考试题【含答案】: 这是一份本溪市重点中学2024年九年级数学第一学期开学统考试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届西双版纳市重点中学数学九年级第一学期开学统考模拟试题【含答案】: 这是一份2025届西双版纳市重点中学数学九年级第一学期开学统考模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。