邵阳市重点中学2025届数学九上开学统考模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列式子:①;②;③;④.其中是的函数的个数是( )
A.1B.2C.3D.4
2、(4分)下列四个多项式中,不能因式分解的是( )
A.a2+aB.C.D.
3、(4分)三角形的三边长分别为①5,12,13;②9,40,41;③8,15,17;④13,84,85,其中能够构成直角三角形的有( )
A.1个B.2个C.3个D.4个
4、(4分)如图,平行四边形中,平分,交于点,且,延长与的延长线交于点,连接,.下列结论:①;②是等边三角形;③;④;⑤中正确的有( )
A.1个B.2个C.3个D.4个
5、(4分)下列由线段、、组成的三角形中,不是直角三角形的为( )
A.,,B.,,
C.,,D.,,
6、(4分)下列命题的逆命题是真命题的是( )
A.对顶角相等B.全等三角形的面积相等
C.两直线平行,内错角相等D.等边三角形是等腰三角形
7、(4分)如果关于的分式方程有非负整数解,且一次函数不经过四象限,则所有符合条件的的和是( ).
A.0B.2C.3D.5
8、(4分)如图,菱形ABCD的对角线AC、BD的长分别为6和8,则这个菱形的周长是( )
A.20B.24C.40D.48
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图在菱形ABCD中,∠A=60°,AD=,点P是对角线AC上的一个动点,过点P作EF⊥AC交AD于点E,交AB于点F,将△AEF沿EF折叠点A落在G处,当△CGB为等腰三角形时,则AP的长为__________.
10、(4分)如图放置的两个正方形的边长分别为和,点为中点,则的长为__________.
11、(4分)计算:(﹣1)0+(﹣)﹣2=_____.
12、(4分)已知,则_______.
13、(4分)一个不透明的袋中装有3个红球,2个黄球,1个白球,每个球除颜色外都相同,从袋中任意摸出一球,则摸到__________球的可能性最大。(填“红色”、“黄色”或“白色”)
三、解答题(本大题共5个小题,共48分)
14、(12分)某家电销售商城电冰箱的销售价为每台2100元,空调的销售价为每台1750元,每台电冰箱的进价比每台空调的进价多400元,商城用80000元购进电冰箱的数量与用64000元购进空调的数量相等.
(1)求每台电冰箱与空调的进价分别是多少?
(2)现在商城准备一次购进这两种家电共100台,设购进电冰箱台,这100台家电的销售总利润为元,要求购进空调数量不超过电冰箱数量的2倍,试确定获利最大的方案以及最大利润.
15、(8分)菱形中,,,为上一个动点,,连接并延长交延长线于点.
(1)如图1,求证:;
(2)当为直角三角形时,求的长;
(3)当为的中点,求的最小值.
16、(8分)某市射击队甲、乙两名队员在相同的条件下各射耙10次,每次射耙的成绩情况如图所示:
(1)请将下表补充完整:
(2)请从下列三个不同的角度对这次测试结果进行分析:
①从平均数和方差相结合看, 的成绩好些;
②从平均数和中位数相结合看, 的成绩好些;
③若其他队选手最好成绩在9环左右,现要选一人参赛,你认为选谁参加,并说明理由.
17、(10分)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若AB=5,AE=8,则BF的长为______.
18、(10分)计算
(1)()-()
(2)(2+3)(2-3)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)因式分解:________.
20、(4分)若一元二次方程ax2﹣bx﹣2019=0有一个根为x=﹣1,则a+b=_____.
21、(4分)如图,在Rt△ABC中,∠BAC=90°,AB=8,AC=6,DE是AB边的垂直平分线,垂足为D,交边BC于点E,连接AE,则△ACE的周长为________.
22、(4分)在平面直角坐标系中,将直线y=2x-1向上平移动4个单位长度后,所得直线的解析式为____________.
23、(4分)设a是的小数部分,则根式可以用表示为______.
二、解答题(本大题共3个小题,共30分)
24、(8分)在直角坐标平面里,梯形ABCD各顶点的位置如图所示,图中每个小正方形方格的边长为1个单位长度.
(1)求梯形ABCD的面积;
(2)如果把梯形ABCD在坐标平面里先向右平移1个单位,然后向下平移2个单位得到梯形A1B1C1D1,求新顶点A1,B1,C1,D1的坐标.
25、(10分)如图,,平分,且交于点,平分,且交于点,与相交于点,连接
(1)求证:四边形是菱形.
(2)若,,求的长.
26、(12分) (1)因式分解:m3n-9mn;(2)解不等式组:.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据以下特征进行判断即可:①有两个变量;②一个变量的数值随着另一个变量的数值的变化而发生变化;③对于自变量的每一个确定的值,函数值有且只有一个值与之对应,即单对应.
【详解】
解:①y=3x-5,y是x的函数;
②y2=x,当x取一个值时,有两个y值与之对应,故y不是x的函数;
③y=|x|,y是x的函数.
④,y是x的函数.
以上是的函数的个数是3个.
故选:C.
本题主要考查的是函数的概念,掌握函数的定义是解题的关键.
2、C
【解析】
逐项分解判断,即可得到答案.
【详解】
解:A选项a2+a=a(a+1);
B选项=(m+n)(m-n);
C选项. 不能因式分解;
D选项. =(a+3)2.
故选C
本题解题的观念是理解因式分解的概念和常见的因式分解方法,即:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解(也叫作分解因式).
3、D
【解析】
试题解析:①、∵52+122=169=132,∴能构成直角三角形,故本小题正确;
②、92+402=1681=412=169,∴能构成直角三角形,故本小题正确;
③、82+152=289=172,∴能构成直角三角形,故本小题正确;
④、∵132+842=852,∴能构成直角三角形,故本小题正确.
故选D.
4、C
【解析】
由平行四边形的性质得出AD∥BC,AD=BC,由AE平分∠BAD,可得∠BAE=∠DAE,可得∠BAE=∠BEA,得AB=BE,由AB=AE,得到△ABE是等边三角形,②正确;则∠ABE=∠EAD=60°,由SAS证明△ABC≌△EAD,①正确;由△FCD与△ABD等底(AB=CD)等高(AB与CD间的距离相等),得出S△FCD=S△ABD,由△AEC与△DEC同底等高,所以S△AEC=S△DEC,得出S△ABE=S△CEF,⑤正确.
【详解】
解:∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴∠EAD=∠AEB,
又∵AE平分∠BAD,
∴∠BAE=∠DAE,
∴∠BAE=∠BEA,
∴AB=BE,
∵AB=AE,
∴△ABE是等边三角形;
②正确;
∴∠ABE=∠EAD=60°,
∵AB=AE,BC=AD,
在△ABC和△EAD中,
,
∴△ABC≌△EAD(SAS);
①正确;
∵△FCD与△ABC等底(AB=CD)等高(AB与CD间的距离相等),
∴S△FCD=S△ABC,
又∵△AEC与△DEC同底等高,
∴S△AEC=S△DEC,
∴S△ABE=S△CEF;
⑤正确;
若AD与AF相等,即∠AFD=∠ADF=∠DEC,
即EC=CD=BE,
即BC=2CD,
题中未限定这一条件,
∴③④不一定正确;
故选C.
本题考查了平行四边形的性质、等边三角形的判定与性质、全等三角形的判定与性质.此题比较复杂,注意将每个问题仔细分析.
5、D
【解析】
欲判断三条线段是否能构成直角三角形的三边,就是判断三边的长是否为勾股数,需验证两小边的平方和是否等于最长边的平方即可.
【详解】
A、72+242=252,故线段a、b、c组成的三角形,是直角三角形,选项错误;
B、42+52=41,故线段a、b、c组成的三角形,是直角三角形,选项错误;
C、82+62=102,故线段a、b、c组成的三角形,是直角三角形,选项错误;
D、402+502≠602,故线段a、b、c组成的三角形,不是直角三角形,选项正确.
故选D.
本题主要考查了勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形,
6、C
【解析】
先分别写出各命题的逆命题,再根据对顶角的概念,全等三角形的判定,平行线的判定以及等腰三角形和等边三角形的关系分别判断即可得解.
【详解】
A、逆命题为:相等的两个角是对顶角,是假命题,故本选项错误;
B、逆命题为:面积相等的两个三角形是全等三角形,是假命题,故本选项错误;
C、逆命题为:内错角相等,两直线平行,是真命题,故本选项正确;
D、逆命题为:等腰三角形是等边三角形,是假命题,故本选项错误.
故选C.
本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
7、B
【解析】
依据关于x的一次函数y=x+m+2不经过第四象限,求得m的取值范围,依据关于x的分式方程有非负整数解,即可得到整数m的取值,即可得到满足条件的m的和.
【详解】
∵一次函数y=x+m+2不经过第四象限,
∴m+2≥0,
∴m≥-2,
∵关于x的分式方程=2有非负整数解
∴x=3-m为非负整数且3-m≠2,
又∵m≥-2,
∴m=-2,-1,0,2,3,
∴所有符合条件的m的和是2,
故选:B.
考查了一次函数的图象与性质以及分式方程的解.注意根据题意求得满足条件的m的值是关键.
8、A
【解析】
分析:由菱形对角线的性质,相互垂直平分即可得出菱形的边长,菱形四边相等即可得出周长.
详解:由菱形对角线性质知,AO=AC=3,BO=BD=4,且AO⊥BO,
则AB==5,
故这个菱形的周长L=4AB=1.
故选A.
点睛:本题考查了菱形面积的计算,考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键,难度一般.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1或.
【解析】
分两种情形①CG=CB,②GC=GB,分别求解即可解决问题.
【详解】
在菱形ABCD中,∵∠A=60°,AD=,
∴AC=3,
①当CG=BC=时,AG=AC=CG=3-,
∴AP=AG=.
②当GC=GB时,易知GC=1,AG=2,
∴AP=AG=1,
故答案为1或.
本题考查翻折变换、等腰三角形的性质、勾股定理、菱形的性质等知识,解题的关键是学会用分类讨论的思想思考问题
10、
【解析】
连接AC,AF,证明△ACF为直角三角形,再利用直角三角形斜边上的中线等于斜边的一半即可求解.
【详解】
如图,连接AC,AF,则AC,AF为两正方形的对角线,
∴∠CAF=∠CAB+∠FAE=45°+45°=90°
∴△ACF为直角三角形,
延长CB交FH于M,
∴CM=4+8=12,FM=8-4=4
在Rt△CMF中,CF=
∵点为中点,
∴AG=CF=
此题主要考查正方形的性质,解题的关键是熟知直角三角形斜边上的中线等于斜边的一半.
11、5
【解析】
按顺序分别进行0次幂运算、负指数幂运算,然后再进行加法运算即可.
【详解】
(﹣1)0+(﹣)﹣2
=1+4
=5,
故答案为:5.
本题考查了实数的运算,涉及了0指数幂、负整数指数幂,熟练掌握各运算的运算法则是解题的关键.
12、
【解析】
先对变形,得到b=,然后将b=代入化简计算即可.
【详解】
解:由,b=
则
故答案为-2.
本题考查了已知等式,求另一代数式值的问题;其解答关键在于对代数式进行变形,寻找它们之间的联系
13、红色
【解析】
可根据概率公式计算出红球、黄球、白球摸到的概率,然后比较即可
【详解】
解:总共有3+2+1=6个球,摸到红球的概率为: ,摸到黄球的概率为:,摸到白球的概率为:,所以红色球的可能性最大.
本题考查可能性的大小,可根据随机等可能事件的概率计算公式分别计算出它们的概率,然后比较即可,也可以列举出所有可能的结果,比较即可.
三、解答题(本大题共5个小题,共48分)
14、(1)每台空调进价为1600元,电冰箱进价为2000元;(2)当购进电冰箱34台,空调66台获利最大,最大利润为13300元.
【解析】
(1)设每台空调的进价为元,每台电冰箱的进价为元,根据题意可列出分式方程,故可求解;
(2)先表示出y,再求出x的取值,根据一次函数的性质即可求解.
【详解】
解:(1)设每台空调的进价为元,每台电冰箱的进价为元.
根据题意得,
解得,,
故每台空调进价为1600元,电冰箱进价为2000元.
(2)设购进电冰箱台,则进购空调(100-x)台,
∴,
∵购进空调数量不超过电冰箱数量的2倍,
∴100-x≤2x
解得,
∵为正整数,,,
∴随的增大而减小,
∴当时,的值最大,即最大利润,(元),
故当购进电冰箱34台,空调66台获利最大,最大利润为13300元.
此题主要考查一次函数与分式方程的求解,解题的关键是根据题意得到方程或函数进行求解.
15、(1)详见解析;(2)当为直角三角形时,的长是或;(3).
【解析】
(1)先根据菱形的性质证,再证,由全等的性质可得,进而得出结论;
(2)分以下两种情况讨论:①,②;
(3)过作于,过作于,当三点在同一直线上且时的值最小,即为的长.
【详解】
解:(1)四边形是菱形,
,,
.
在和中,
,
,
.
(2)连接交于点,
四边形是菱形,
,.
又∠ABC=60°,∴△ABC为等边三角形,
∴,.
∴.
∴.
,
.
当时,有,
在中,
,
设,,
,
,解得.
.
.
当时,有,
由知,
是等腰直角三角形.
.
综上:当为直角三角形时,的长是或.
(3)过作于,过作于,
在中,
又是的中点,
.
当三点在同一直线上且时
的值最小,即为的长.
在中,
,,
,
∴.
的最小值是.
本题主要考查菱形的性质,等边三角形的判定,以及菱形中线段和的最值问题,综合性较强.
16、(1)见解析;(2)(2)①甲;②乙;③选乙;理由见解析.
【解析】
试题分析:(1)分别根据方差公式、中位数的定义以及算术平均数的计算方法进行计算即可得解;
(2)①在平均数相等的情况下,方差小的成绩稳定,比较方差可得结论;②在平均数相等的情况下,中位数大的成绩好,比较中位数可得结论;③根据数据特征、折线图的趋势和命中9环以上的次数来进行综合判断,继而选出参赛队员.
解:(1)
(2)①甲;②乙;③选乙;
理由:综合看,甲发挥更稳定,但射击精准度差;乙发挥虽然不稳定,但击中高靶环次数更多,成绩逐步上升,提高潜力大,更具有培养价值,应选乙
17、1
【解析】
先由角平分线的定义和平行线的性质得AB=BE=5,再利用等腰三角形三线合一得AH=EH=4,最后利用勾股定理得BH的长,即可求解.
【详解】
解:如图,
∵AG平分∠BAD,
∴∠BAG=∠DAG,
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠AEB=∠DAG,
∴∠BAG=∠AEB,
∴AB=BE=5,
由作图可知:AB=AF,
∠BAE=∠FAE,
∴BH=FH,BF⊥AE,
∵AB=BE
∴AH=EH=4,
在Rt△ABH中,由勾股定理得:BH=3
∴BF=2BH=1,
故答案为:1.
本题考查了平行四边形的性质、勾股定理、角平分线的作法和定义、等腰三角形三线合一的性质,熟练掌握平行加角平分线可得等腰三角形,属于常考题型.
18、 (1) ;(2)-1.
【解析】
(1)先把二次根式化为最简二次根式,然后合并即可;
(2)利用平方差公式计算.
【详解】
(1)原式=
=;
(2)原式=8-9=-1.
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
首先提出公因式,然后进一步利用完全平方公式进行因式分解即可.
【详解】
解:原式=
=.
故答案为: .
本题主要考查了因式分解,熟练掌握相关方法及公式是解题关键.
20、1
【解析】
直接把x=−1代入一元二次方程ax2−bx−1=0中即可得到a+b的值.
【详解】
解:把x=﹣1代入一元二次方程ax2﹣bx﹣1=0得a+b﹣1=0,
所以a+b=1.
故答案为1
本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
21、1
【解析】
由DE是AB边的垂直平分线,可得AE=BE,又由在直角△ABC中,∠BAC=90°,AB=8,AC=6,利用勾股定理即可求得BC的长,继而由△ACE的周长=AC+BC,求得答案.
【详解】
解:∵DE是AB边的垂直平分线,
∴AE=BE,
∵在直角△ABC中,∠BAC=90°,AB=8,AC=6,
∴BC==10,
∴△ACE的周长为:AC+AE+CE=AC+BE+CE=AC+BC=6+10=1.
故答案为:1.
本题考查,线段垂直平分线的性质以及勾股定理.此题难度不大,注意掌握数形结合思想与转化思想的应用.
22、y=2x+1
【解析】
根据直线平移k值不变,只有b发生改变进行解答即可.
【详解】
由题意得:平移后的解析式为:y=2x-1+4,
y=2x+1,
故填:y=2x+1.
本题考查了一次函数图象与几何变换,在解题时,紧紧抓住直线平移后k值不变这一性质即可.
23、
【解析】
根据题意用表示出a,代入原式化简计算即可得到结果.
【详解】
解:根据题意得:a=,
则原式=
=
=
=
=,
故答案为:.
此题考查了估算无理数的大小,根据题意表示出a是解本题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)12;(2)A1(﹣2,﹣3),B1(3,﹣3),C1(3,0),D1(0,0)
【解析】
试题分析:(1)判断出A、B、C、D四点坐标,利用梯形的面积公式计算即可;
(2)则平移公式为:,即可解决问题;
试题解析:
(1)由图可知:
A(﹣3,﹣1)、B(2,﹣1)、C(2,2)、D(﹣1,2)
AB∥CD,BC⊥AB,
所以,梯形ABCD是直角梯形,
AB=5,DC=3,BC=3,
梯形ABCD的面积是S=
(2)如果把梯形ABCD在坐标平面里先向右平移1个单位,然后向下平移2个单位,则平移公式为:
所以,平移以后所得梯形A1B1C1D1各顶点的坐标分别为:
A1(﹣2,﹣3),B1(3,﹣3),C1(3,0),D1(0,0)
A1(-2,-3),B1(3,-3),C1(3,0),D1(0,0)
【点睛】考查梯形的面积公式.、坐标与图形的性质、平移变换等知识,解题的关键是熟练掌握坐标与图形的性质,正确写出点的坐标是解决问题的关键.
25、(1)见解析;(2)AD=.
【解析】
(1)根据平行线的性质得出∠ADB=∠DBC,∠DAC=∠BCA,根据角平分线定义得出∠DAC=∠BAC,∠ABD=∠DBC,求出∠BAC=∠ACB,∠ABD=∠ADB,根据等腰三角形的判定得出AB=BC=AD,根据平行四边形的判定得出四边形ABCD是平行四边形,即可得出结论;
(2)根据菱形的性质可得∠AOD=90°,OD=3,然后在Rt△AOD中利用勾股定理列方程求出AO即可解决问题.
【详解】
(1)证明:∵AE∥BF,
∴∠ADB=∠DBC,∠DAC=∠BCA,
∵AC、BD分别是∠BAD、∠ABC的平分线,
∴∠DAC=∠BAC,∠ABD=∠DBC,
∴∠BAC=∠ACB,∠ABD=∠ADB,
∴AB=BC,AB=AD
∴AD=BC,
∵AD∥BC,
∴四边形ABCD是平行四边形,
∵AD=AB,
∴平行四边形四边形ABCD是菱形;
(2)∵四边形ABCD是菱形,BD=6,
∴∠AOD=90°,OD=3,
∵,
∴AD=2AO,
在Rt△AOD中,AD2=AO2+OD2,即4AO2=AO2+9,
∴AO=,
∴AD=2AO=.
本题主要考查了平行线的性质、角平分线定义、等腰三角形的判定、平行四边形的判定、菱形的判定和性质、含30度直角三角形的性质以及勾股定理,熟练掌握菱形的判定定理和性质定理是解题的关键.
26、(1);(2).
【解析】
(1)原式提取公因式,再利用平方差公式分解即可;
(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.
【详解】
解:(1)原式;
(2),
由①得:,
由②得:,
则不等式组的解集为.
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
题号
一
二
三
四
五
总分
得分
平均数
方差
中位数
甲
1.2
乙
7
7.5
吉林市重点中学2025届数学九上开学统考试题【含答案】: 这是一份吉林市重点中学2025届数学九上开学统考试题【含答案】,共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届荆门市重点中学数学九上开学统考试题【含答案】: 这是一份2025届荆门市重点中学数学九上开学统考试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届河源市重点中学数学九上开学统考试题【含答案】: 这是一份2025届河源市重点中学数学九上开学统考试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。