![运城市重点中学2024年九年级数学第一学期开学综合测试模拟试题【含答案】01](http://img-preview.51jiaoxi.com/2/3/16294937/0-1729990365565/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![运城市重点中学2024年九年级数学第一学期开学综合测试模拟试题【含答案】02](http://img-preview.51jiaoxi.com/2/3/16294937/0-1729990365614/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![运城市重点中学2024年九年级数学第一学期开学综合测试模拟试题【含答案】03](http://img-preview.51jiaoxi.com/2/3/16294937/0-1729990365649/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
运城市重点中学2024年九年级数学第一学期开学综合测试模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,四边形ABCD是正方形,点E、F分别在AD、CD上,AF、BE相交于点G,且AF=BE,则下列结论不正确的是:( )
A.AF⊥BEB.BG=GFC.AE=DFD.∠EBC=∠AFD
2、(4分)关于的方程(为常数)有两个相等的实数根,那么k的值为( )
A.B.C.D.
3、(4分)已知是一元二次方程的一个实数根,则的取值范围为( )
A.B.C.D.
4、(4分)如图,要测定被池塘隔开的A,B两点的距离.可以在AB外选一点C,连接AC,BC,并分别找出它们的中点D,E,连接DE.现测得AC=30m,BC=40m,DE=24m,则AB=( )
A.50mB.48mC.45mD.35m
5、(4分)从﹣3、﹣2、﹣1、1、2、3这六个数中,随机抽取一个数记作a,使关于x的分式方程有整数解,且使直线y=3x+8a﹣17不经过第二象限,则符合条件的所有a的和是( )
A.﹣4B.﹣1C.0D.1
6、(4分)已知AB=8cm,小红在作线段AB的垂直平分线时操作如下:分别以A和B为圆心,5cm的长为半径画弧,两弧相交于C、D,则直线CD即为所求,根据此种作图方法所得到的四边形ADBC的面积是( )
A.12cm2B.24cm2C.36cm2D.48cm2
7、(4分)计算的结果为( )
A.2B.-4C.4D.±4
8、(4分)4名选手在相同条件下各射靶10次,统计结果如下表.表现较好且更稳定的是( )
A.甲B.乙C.丙D.丁
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在正方向中,是对角线上一点,的延长线与交于点,若,则______;
10、(4分)如图,正方形的边长为5 cm,是边上一点,cm.动点由点向点运动,速度为2 cm/s ,的垂直平分线交于,交于.设运动时间为秒,当时,的值为______.
11、(4分)由作图可知直线与互相平行,则方程组的解的情况为______.
12、(4分)如图所示,平行四边形中,点在边上,以为折痕,将向上翻折,点正好落在上的处,若的周长为8,的周长为22,则的长为__________.
13、(4分)将等腰直角三角形AOB按如图所示放置,然后绕点O逆时针旋转90°至△A′OB′的位置,点B的横坐标为2,则点A′的坐标为 .
三、解答题(本大题共5个小题,共48分)
14、(12分)先化简,再求值:,其中x=2019.
15、(8分)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(﹣1,﹣3),C(3,n),交y轴于点B,交x轴于点D.
(1)求反比例函数y=和一次函数y=kx+b的表达式;
(2)连接OA,OC.求△AOC的面积.
16、(8分)如图1,在中,是边上一点,且,是的中点,过点作的平行线交的延长线于,连接.
(1)求证:四边形是平行四边形;
(2)如图2,若,,求四边形的面积.
17、(10分)如图,在四边形纸片ABCD中,∠B=∠D=90°,点E,F分别在边BC,CD上,将AB,AD分别沿AE,AF折叠,点B,D恰好都和点G重合,∠EAF=45°.
(1)求证:四边形ABCD是正方形;
(2)求证:三角形ECF的周长是四边形ABCD周长的一半;
(3)若EC=FC=1,求AB的长度.
18、(10分)如图所示,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.
(1)求证:D是BC的中点;
(2)若AB=AC,试判断四边形AFBD的形状,并证明你的结论.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)矩形的两条对角线的夹角为,较短的边长为,则对角线长为________.
20、(4分)植树节期间,市团委组织部分中学的团员去东岸湿地公园植树.三亚市第二中学七(3)班团支部领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有_____棵.
21、(4分)在一次数学活动课上,老师让同学们借助一副三角板画平行线AB,下面是小楠、小曼两位同学的作法:
老师说:“小楠、小曼的作法都正确”
请回答:小楠的作图依据是______;
小曼的作图依据是______.
22、(4分)如图,在△ABC中,∠ACB=90°,AC=12,BC=5,AM=AC,BN=BC,则MN的长为___.
23、(4分)如图,正方形中,点在上,交、于点、,点、分别为、的中点,连接、,若,,则______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在每个小正方形的边长都是的正方形网格中,的三个顶点都在小正方形的格点上.将绕点旋转得到(点、分别与点、对应),连接,.
(1)请直接在网格中补全图形;
(2)四边形的周长是________________(长度单位)
(3)直接写出四边形是何种特殊的四边形.
25、(10分)如图,在△ABC 中,∠B=30°,∠C=45°,AC=2.求 BC 边上的高及△ABC 的面积.
26、(12分)在平面直角坐标系中,三个顶点的坐标分别是,,.
(1)将绕点旋转,请画出旋转后对应的;
(2)将沿着某个方向平移一定的距离后得到,已知点的对应点的坐标为,请画出平移后的;
(3)若与关于某一点中心对称,则对称中心的坐标为_____.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
由四边形ABCD是正方形,可得AD=BA,∠D=∠BAE=90°,利用直角三角形全等的判定(HL)可得Rt△ABE≌Rt△DAF,可得出边角关系,对应选项逐一验证即可.
【详解】
∵四边形ABCD是正方形,
∴ AD=AB,∠D=∠BAE=90°,
又AF=BE,
∴Rt△ABE≌Rt△DAF(HL),
∴∠ABE=∠DAF,∠AEB=∠DFA,AE=DF,因此C选项正确,
又∵∠DAF+∠DFA =90°,
∴∠DAF+∠AEB=90°,
∴∠AGE=90°,即AF⊥BE,因此A选项正确,
∵∠EBC+∠ABE=90°,∠ABE+∠AEB=90°,∠AEB=∠AFD,
∴∠EBC=∠AFD,因此D选项正确,
∵BE=AF,若BG=GF,则AG=GE,可得,∠DAF=45°,则AF应该为正方形的对角线,从图形来看,AF不是对角线,所以与题目矛盾,所以B选项错误,
故选:B.
考查了正方形的性质,全等三角形的判定和性质,余角的定义,垂直的定义,熟记几何图形的概念,判定和性质定理是解题的关键,注意题目要求选不正确的.
2、A
【解析】
解:∵方程有两相等的实数根,
∴△=b2-4ac=12-8k=0,
解得:k=
故选A.
本题考查根的判别式.
3、B
【解析】
设u=,利用求根公式得到关于u的两个一元二次方程,并且这两个方程都有实根,所以由判别式大于或等于1即可得到ab≤.
【详解】
因为方程有实数解,故b2-4ac≥1.
由题意有:或,设u=,
则有2au2-u+b=1或2au2+u+b=1,(a≠1),
因为以上关于u的两个一元二次方程有实数解,
所以两个方程的判别式都大于或等于1,即得到1-8ab≥1,
所以ab≤.
故选B.
本题考查了一元二次方程ax2+bx+c=1(a≠1,a,b,c为常数)的求根公式:x=(b2-4ac≥1).
4、B
【解析】
∵D是AC的中点,E是BC的中点,
∴DE是△ABC的中位线,
∴DE=AB,
∵DE=24m,
∴AB=2DE=48m,
故选B.
5、B
【解析】
先求出满足分式方程条件存立时a的值,再求出使直线y=3x+8a﹣17不经过第二象限时a的值,进而求出同时满足条件a的值.
【详解】
解:解分式方程得:
x=﹣,
∵x是整数,
∴a=﹣3,﹣2,1,3;
∵分式方程有意义,
∴x≠0或2,
∴a≠﹣3,
∴a=﹣2,1,3,
∵直线y=3x+8a﹣17不经过第二象限,
∴8a﹣17≤0
∴a≤,
∴a的值为:﹣3、﹣2、﹣1、1、2,
综上,a=﹣2,1,
和为﹣2+1=﹣1,
故选:B.
本题主要考查了一次函数的性质以及分式方程的解的知识,解题的关键是掌握根的个数与系数的关系以及分式有意义的条件,此题难度不大.
6、B
【解析】
根据垂直平分线的画法得出四边形ADBC四边的关系进而得出四边形一定是菱形,由菱形的性质以及勾股定理求出对角线CD的长,代入菱形面积公式即可求解.
【详解】
如图:
∵分别以A和B为圆心,5cm的长为半径画弧,两弧相交于C、D,
∴AC=AD=BD=BC=5cm,
∴四边形ADBC是菱形,
∴AB⊥CD,AO=OB=4cm,CD=2OC,
∴由勾股定理得:OC=3cm,
∴CD=6cm,
∴四边形ADBC的面积=AB•CD=×8×6=24cm2,
故选:B.
此题主要考查了线段垂直平分线的性质以及菱形的判定和性质,得出四边形四边关系是解决问题的关键.
7、C
【解析】
根据算术平方根的定义进行计算即可.
【详解】
解:=4,
故选C.
本题主要考查了算术平方根的定义,掌握算术平方根的定义是解题的关键.
8、B
【解析】
先比较平均数,乙、丁的平均成绩好且相等,再比较方差即可解答.
【详解】
解:∵乙、丁的平均成绩大于甲、丙,且乙的方差小于丁的方差,
∴表现较好且更稳定的是乙,
故选:B.
本题考查方差的意义:反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、4
【解析】
由正方形的对称性和矩形的性质可得结果.
【详解】
连接DE交FG于点O,由正方形的对称性及矩形的性质可得:
∠ABE=∠ADF=∠OEF=∠OFE=15°, ∴∠EOH=30°, ∴BE=DE=2OE=4EH, ∴=4.
故答案为4.
本题考查了正方形的性质与矩形的性质,解答本题的关键是利用正方形的对称性求得∠ABE=∠ADF=∠OEF=∠OFE=15,进而利用RT△中30°所对的直角边等于斜边的一半解决问题.
10、2
【解析】
连接ME,根据MN垂直平分PE,可得MP=ME,当时,BC=MP=5,所以可得EM=5,AE=3,可得AM=DP=4,即可计算出t 的值.
【详解】
连接ME
根据MN垂直平分PE
可得为等腰三角形,即ME=PM
故答案为2.
本题主要考查等腰三角形的性质,这类题目是动点问题的常考点,必须掌握方法.
11、无解
【解析】
二元一次方程组的解,就是两个函数图象的交点坐标,当两函数图象平行时,两个函数无交点,因此解析式所组成的方程组无解.
【详解】
∵直线y=-5x+2与y=-5x-3互相平行,
∴方程组无解,
故答案为:无解.
此题主要考查了一次函数与二元一次方程组的关系,关键是掌握二元一次方程组的解,就是两个函数图象的交点.
12、1.
【解析】
依据△FDE的周长为8,△FCB的周长为22,即可得出DF+AD=8,FC+CB+AB=22,进而得到平行四边形ABCD的周长=8+22=30,可得AB+BC=BF+BC=15,再根据△FCB的周长=FC+CB+BF=22,即可得到CF=22-15=1.
【详解】
解:由折叠可得,EF=AE,BF=AB.
∵△FDE的周长为8,△FCB的周长为22,
∴DF+AD=8,FC+CB+AB=22,
∴平行四边形ABCD的周长=8+22=30,
∴AB+BC=BF+BC=15,
又∵△FCB的周长=FC+CB+BF=22,
∴CF=22-15=1,
故答案为:1.
本题考查了平行四边形的性质及图形的翻折问题,折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.
13、 (-1,1).
【解析】
解:过点A作AC⊥x轴于点C,过点A′作A′D⊥x轴,
因为ΔOAB是等腰直角三角形,所以有OC=BC=AC=1,
∠AOB=∠AOB′=45°,
则点A的坐标是(1,1),
OA=,又∠A′OB′=45°,
所以∠A′OD=45°,OA′=,
在RtΔA′OD中,cs∠A′OD= ,
所以OD=1,A′D=1,所以点A′的坐标是(-1,1).
考点:1、旋转的性质;2、等腰三角形的性质.
三、解答题(本大题共5个小题,共48分)
14、x+2,2021
【解析】
先把除法转化为乘法,约分化简,然后把x=2019代入计算即可.
【详解】
原式=
=x+2,
当x=2019时,
原式=2019+2=2021.
本题考查了分式的计算和化简.解决这类题目关键是把握好通分与约分,分式加减的本质是通分,乘除的本质是约分.同时注意在进行运算前要尽量保证每个分式最简.
15、(1)y=,y=x﹣2;(2)1.
【解析】
(1)先把A点坐标代入y=中求出m得到反比例函数的解析式是y=,再确定C的坐标,然后利用待定系数法求一次函数解析式;
(2)先确定D(2,0),然后根据三角形面积公式,利用S△AOC=S△OCD+S△AOD进行计算.
【详解】
解:(1)把A(﹣1,﹣3)代入y=得m=﹣1×(﹣3)=3,
则反比例函数的解析式是y=,
当x=3代入y==1,则C的坐标是(3,1);
把A(﹣1,﹣3),C(3,1)代入y=kx+b得,解得,
所以一次函数的解析式是:y=x﹣2;
(2)x=0,x﹣2=0,解得x=2,则D(2,0),
所以S△AOC=S△OCD+S△AOD=×2×(1+3)=1.
本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.
16、(1)详见解析;(2)60;
【解析】
(1)先证明得出AF=CD,再证得AF=BD, 又因为 ,可得四边形是平行四边形;
(2)由等腰三角形三线合一性质得,从而得出平行四边形是矩形.再得用勾股定理求出AD,即可得出矩形面积。
【详解】
(1)证明:∵,
∴,
∵点为的中点,
∴,
在和中,
∴,
∴,
∵,
∴
又∵
∴ 四边形是平行四边形。
(2)解:
∵,
∴,
又∵四边形是平行四边形,
∴平行四边形是矩形.
在中,
∴
本题考查了全等三角形的判定与性质,考查了平行四边形和距形的判定,等腰三角形和勾股定理的应用。
17、(1)见解析;(2)见解析;(3)+1
【解析】
分析:(1)由题意得,∠BAE=∠EAG,∠DAF=∠FAG,于是得到∠BAD=2∠EAF=90°,推出四边形ABCD是矩形,根据正方形的判定定理即可得到结论;
(2)根据EG=BE,FG=DF,得到EF=BE+DF,于是得到△ECF的周长=EF+CE+CF=BE+DF+CE+CF=BC+CD,即可得到结论;
(3)根据EC=FC=1,得到BE=DF,根据勾股定理得到EF=,于是得到结论.
详(1)证明:由题意得,∠BAE=∠EAG,∠DAF=∠FAG,
∴∠BAD=2∠EAF=90°,
∴四边形ABCD是矩形,
∵AB=AG,AD=AG,
∴AB=AD,
∴四边形ABCD是正方形;
(2)证明:∵EG=BE,FG=DF,
∴EF=BE+DF,
∴△ECF的周长=EF+CE+CF=BE+DF+CE+CF=BC+CD,
∴三角形ECF的周长是四边形ABCD周长的一半;
(3)∵EC=FC=1,
∴BE=DF,
∴EF=,
∵EF=BE+DF,
∴BE=DF=EF=,
∴AB=BC=BE+EC=+1.
点睛:本题考查了翻折变换的知识,解答本题的关键是熟练掌握翻折变换的性质:翻折前后对应边相等,另外要求同学们熟练掌握勾股定理的应用.
18、(1)见解析;(2)若AB=AC,则四边形AFBD是矩形.理由见解析
【解析】
(1)先说明∠AFE=∠DCE,再证明△AEF和△DEC全等,最后根据全等三角形的性质和等量关系即可证明;
(2)由(1)可得AF平行且等于BD,即四边形AFBD是平行四边形;再利用等腰三角形三线合一,可得AD⊥BC,即∠ADB=90°,即可证明四边形AFBD是矩形.
【详解】
(1)证明:∵AF∥BC,
∴∠AFE=∠DCE,
∵点E为AD的中点,
∴AE=DE,
在△AEF和△DEC中,
,
∴△AEF≌△DEC(AAS),
∴AF=CD,
∵AF=BD,
∴CD=BD,
∴D是BC的中点;
(2)解:若AB=AC,则四边形AFBD是矩形.理由如下:
∵△AEF≌△DEC,
∴AF=CD,
∵AF=BD,
∴CD=BD;
∵AF∥BD,AF=BD,
∴四边形AFBD是平行四边形,
∵AB=AC,BD=CD,
∴∠ADB=90°,
∴平行四边形AFBD是矩形.
本题考查了矩形的判定、全等三角形的判定与性质、平行四边形的判定等知识点,掌握矩形的判定方法是解答本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
分析:根据矩形对角线相等且互相平分性质和题中条件易得△AOB为等边三角形,即可得到矩形对角线一半长,进而求解即可.
详解:如图:
AB=12cm,∠AOB=60°.
∵四边形是矩形,AC,BD是对角线.
∴OA=OB=OD=OC=BD=AC.
在△AOB中,OA=OB,∠AOB=60°.
∴OA=OB=AB=12cm,BD=2OB=2×12=1cm.
故答案为1.
点睛:矩形的两对角线所夹的角为60°,那么对角线的一边和两条对角线的一半组成等边三角形.本题比较简单,根据矩形的性质解答即可.
20、121
【解析】
设共有x人,则有4x+37棵树,根据“若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵”列不等式组求解可得.
【详解】
设市团委组织部分中学的团员有x人,则树苗有(4x+37)棵,由题意得1(4x+37)-6(x-1)<3,去括号得:1-2x+43<3,移项得:-42-2x<-40,解得:20
21、同位角相等,两直线平行或垂直于同一直线的两条直线平行 内错角相等,两直线平行
【解析】
由平行线的判定方法即可得到小楠、小曼的作图依据.
【详解】
解:∵∠B=∠D=90°,
∴AB//CD(同位角相等,两直线平行);
∵∠ABC=∠DCB=90°,
∴AB//CD(内错角相等,两直线平行),
故答案为:同位角相等,两直线平行(或垂直于同一直线的两条直线平行);内错角相等,两直线平行.
本题考查了作图-复杂作图和平行线的判定方法,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.
22、1.
【解析】
由图示知:MN=AM+BN﹣AB,所以结合已知条件,根据勾股定理求出AC的长即可解答.
【详解】
解:在Rt△ABC中,根据勾股定理,AB==13,
又∵AC=12,BC=5,AM=AC,BN=BC,
∴AM=12,BN=5,
∴MN=AM+BN﹣AB=12+5﹣13=1.
故答案是:1.
本题考查勾股定理,解题的关键是结合图形得出:MN=AM+BN﹣AB.
23、
【解析】
连接,取的中点,连,,由中位线性质得到,,,,设,由勾股定理得方程,求解后进一步可得MN的值.
【详解】
解:连接,取的中点,连,,
则,,,
∵,为中点
∴,
∵BD平分,
∴BE=EG
设,
则,
∴在中,
,
解得(舍),
∴,,
∴.
本题考查了正方形和直角三角形的性质,添加辅助线后运用中位线性质和方程思想解决问题是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2);(3)正方形,见解析
【解析】
(1)根据中心对称的特点得到点A1、C1,顺次连线即可得到图形;
(2)根据图形分别求出AC、、、的长即可得到答案;
(3)求出AB、AC、BC的长度,根据勾股定理逆定理及中心对称图形得到四边形是正方形,即可求出答案.
【详解】
(1)如图,
(2)∵,,, ,
∴四边形的周长=AC+++=,
故答案为:;
(3)由题意得: ,,,
∴AB=BC, ,
∴△ABC是等腰直角三角形,
由(2)得,
∴四边形是菱形,
由中心对称得到,,,
∴是等腰直角三角形,
∴,
∴,
∴四边形是正方形.
此题考查中心对称图形的作图能力,勾股定理计算网格中线段长度,等腰直角三角形的判定定理及性质定理,勾股定理的逆定理,正方形的判定定理.
25、2,2+2.
【解析】
先根据AD⊥BC,∠C=45°得出△ACD是等腰直角三角形,再由AC=2 得出AD及CD的长,由∠B=30°求出BD的长,根据三角形的面积公式即可得出结论.
【详解】
∵AD⊥BC,∠C=45°,
∴△ACD是等腰直角三角形,
∵AD=CD.
∵AC=2,
∴2AD=AC,即2AD=8,解得AD=CD=2.
∵∠B=30°,
∴AB=2AD=4,
∴BD= ,
∴BC=BD+CD=2 +2,
∴S = BC⋅AD= (2+2)×2=2+2.
此题考查勾股定理,解题关键在于求出BD的长.
26、(1)见解析;(2)见解析;(3)
【解析】
(1)延长BC到B1使B1C=BC,延长AC到A1使A1C=AC,从而得到△A1B1C1;
(2)利用点A1和A2的坐标特征得到平移的规律,然后描点得到△A2B2C2;
(3)利用关于原点对称的点的坐标特征进行判断.
【详解】
(1)△A1B1C1如图所示;
(2)△A2B2C2,如图所示;
(3)∵,,,,,
∴与关于原点对,对称中心坐标为,
本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.
题号
一
二
三
四
五
总分
得分
批阅人
芜湖市重点中学2024年九年级数学第一学期开学综合测试模拟试题【含答案】: 这是一份芜湖市重点中学2024年九年级数学第一学期开学综合测试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
双鸭山市重点中学2024年数学九年级第一学期开学综合测试模拟试题【含答案】: 这是一份双鸭山市重点中学2024年数学九年级第一学期开学综合测试模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
丽江市重点中学2025届九年级数学第一学期开学综合测试模拟试题【含答案】: 这是一份丽江市重点中学2025届九年级数学第一学期开学综合测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。