搜索
    上传资料 赚现金
    英语朗读宝

    2024年山西省运城市永济市九年级数学第一学期开学综合测试试题【含答案】

    2024年山西省运城市永济市九年级数学第一学期开学综合测试试题【含答案】第1页
    2024年山西省运城市永济市九年级数学第一学期开学综合测试试题【含答案】第2页
    2024年山西省运城市永济市九年级数学第一学期开学综合测试试题【含答案】第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年山西省运城市永济市九年级数学第一学期开学综合测试试题【含答案】

    展开

    这是一份2024年山西省运城市永济市九年级数学第一学期开学综合测试试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为( )
    A.66°B.104°C.114°D.124°
    2、(4分)某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )
    A.6折B.7折
    C.8折D.9折
    3、(4分)若分式的值为0,则x的值是( )
    A.2B.0C.﹣2D.任意实数
    4、(4分)如图,在四边形ABCD中,AC与BD相交于点O,AD∥BC,AC=BD,那么下列条件中不能判定四边形ABCD是矩形的是( )
    A.AD=BCB.AB=CDC.∠DAB=∠ABCD.∠DAB=∠DCB
    5、(4分)下列图形中,是中心对称图形的是( )
    A.B.C.D.
    6、(4分)用配方法解一元二次方程时,此方程配方后可化为( )
    A.B.C.D.
    7、(4分)一个不透明的袋子中装有21个红球和若干个白球,这些球除了颜色外都相同,若小英每次从袋子中随机摸出一个球,记下颜色后再放回,经过多次重复试验,小英发现摸到红球的频率逐渐稳定于1.4,则小英估计袋子中白球的个数约为( )
    A.51B.31C.12D.8
    8、(4分)下列式子中,y不是x的函数的是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)已知一次函数y=2(x﹣2)+b的图象在y轴上的截距为5,那么b=_____.
    10、(4分)如图,在菱形ABCD中,AC交BD于P,E为BC上一点,AE交BD于F,若AB=AE,,则下列结论:①AF=AP;②AE=FD;③BE=AF.正确的是______(填序号).
    11、(4分)数据,,,,,的方差_________________
    12、(4分)如图,中,,若动点从开始,按C→A→B→C的路径运动(回到点C就停止),且速度为每秒,则P运动________秒时, 为等腰三角形.(提示:直角三角形中,当斜边和一条直角边长分别为和时,另一条直角边为)
    13、(4分)若函数y=x﹣1与的图象的交点坐标为(m,n),则的值为_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点.
    (1)在图中以格点为顶点画一个面积为5的正方形.
    (2)如图2所示,A,B,C是小正方形的顶点,求∠ABC的度数.
    15、(8分)如图,分别表示甲步行与乙骑自行车(在同一条路上)行走的路程、与时间的关系,观察图象并回答下列问题:
    (1)乙出发时,乙与甲相距 千米;
    (2)走了一段路程后,乙有事耽搁,停下来时间为 小时;
    (3)甲从出发起,经过 小时与乙相遇;
    (4)甲行走的平均速度是多少千米小时?
    16、(8分)如图,在正方形网格中,每个小正方形的边长都是1,点A、B、C、D都在格点上.
    (1)线段AB的长是______;
    (2)在图中画出一条线段EF,使EF的长为,并判断AB、CD、EF三条线段的长能否成为一个直角三角形三边的长?说明理由.
    17、(10分)小梅在浏览某电影评价网站时,搜索了最近关注到的甲、乙、丙三部电影,网站通过对观众的抽样调查,得到这三部电影的评分数据统计图分别如下:
    甲、乙、丙三部电影评分情况统计图

    根据以上材料回答下列问题:
    (1)小梅根据所学的统计知识,对以上统计图中的数据进行了分析,并通过计算得到这三部电影抽样调查的样本容量,观众评分的平均数、众数、中位数,请你将下表补充完整:
    甲、乙、丙三部电影评分情况统计表
    (2)根据统计图和统计表中的数据,可以推断其中_______电影相对比较受欢迎,理由是
    _______________________________________________________________________.(至少从两个不同的角度说明你推断的合理性)
    18、(10分)垫球是排球运动的一项重要技术.下列图表中的数据分别是甲、乙、内三个运动员十次垫球测试的成绩,规则为每次测试连续垫球10个,每垫球到位1个记1分.
    (1)写出运动员甲测试成绩的众数和中位数;
    (2)试从平均数和方差两个角度综合分析,若在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?(参考数据:三人成绩的方差分别为S甲2=0.8、S乙2=0.4、s丙2=0.81)
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在▱ABCD中,∠ADO=30°,AB=8,点A的坐标为(﹣3,0),则点C的坐标为_____.
    20、(4分)在一个不透明的布袋中装有8个白球和4个红球,它们除了颜色不同外,其余均相同.从中随机摸出一个球,投到红球的概率是__________.
    21、(4分)直线y=x+2与x轴的交点坐标为___________.
    22、(4分)如图,OP=1,过P作PP1⊥OP且PP1=1,得OP1=;再过P1作P1P2⊥OP1且P1P2=1,得OP2=;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2…依此法继续作下去,得=____.
    23、(4分)若代数式+(x﹣1)0在实数范围内有意义,则x的取值范围为_____
    二、解答题(本大题共3个小题,共30分)
    24、(8分)某农机租赁公司共有50台收割机,其中甲型20台、乙型30台,现将这50台联合收割机派往A,B两地区收割小麦,其中30台派往A地区,20台派往B地区,两地区与该农机公司商定的每天租赁价格如下表:
    (1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机天获得的租金为y元,求y关于x的函数关系式,并写出自变量的取值范围:
    (2)若使农机租赁公司这50台收割机一天所获租金不低于79600元,为农机租赁公司拟出一个分派方案,使该公司50台收割机每天获得租金最高,并说明理由.
    25、(10分)关于x的一元二次方程有实数根.
    (1)求k的取值范围;
    (2)若k是该方程的一个根,求的值.
    26、(12分)菱形ABCD中,两条对角线AC、BD相交于点O,点E和点F分别是BC和CD上一动点,且∠EOF+∠BCD=180°,连接EF.
    (1)如图2,当∠ABC=60°时,猜想三条线段CE、CF、AB之间的数量关系___;
    (2)如图1,当∠ABC=90°时,若AC=4 ,BE=,求线段EF的长;
    (3)如图3,当∠ABC=90°,将∠EOF的顶点移到AO上任意一点O′处,∠EO′F绕点O′旋转,仍满足∠EO′F+∠BCD=180°,O′E交BC的延长线一点E,射线O′F交CD的延长线上一点F,连接EF探究在整个运动变化过程中,线段CE、CF,O′C之间满足的数量关系,请直接写出你的结论.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    根据平行四边形性质和折叠性质得∠BAC=∠ACD=∠B′AC=∠1,再根据三角形内角和定理可得.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AB∥CD,
    ∴∠ACD=∠BAC,
    由折叠的性质得:∠BAC=∠B′AC,
    ∴∠BAC=∠ACD=∠B′AC=∠1=22°
    ∴∠B=180°-∠2-∠BAC=180°-44°-22°=114°;
    故选C.
    本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC的度数是解决问题的关键.
    2、B
    【解析】
    设可打x折,则有1200×-800≥800×5%,
    解得x≥1.
    即最多打1折.
    故选B.
    本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以2.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.
    3、A
    【解析】
    根据分式值为0的条件进行求解即可.
    【详解】
    由题意x-2=0,
    解得:x=2,
    故选A.
    本题考查了分式值为0的条件,熟知“分式值为0的条件是分子为0且分母不为0”是解题的关键.
    4、B
    【解析】
    有一个角是直角的平行四边形是矩形;有三个角是直角的四边形是矩形;对角线相等的平行四边形是矩形,依据矩形的判定进行判断即可。
    【详解】
    解:A.当AD=BC,AD∥BC时,四边形ABCD是平行四边形,再依据AC=BD,可得四边形ABCD是矩形;
    B.当AB=CD,AD∥BC时,四边形ABCD不一定是平行四边形,也可能是等腰梯形;
    C.当∠DAB=∠ABC,AD∥BC时,∠DAB=∠CBA=90°,再根据AC=BD,可得△ABD≌△BAC,进而得到AD=BC,即可得到四边形ABCD是矩形;
    D.当∠DAB=∠DCB,AD∥BC时,∠ABC+∠BCD=180°,即可得出四边形ABCD是平行四边形,再依据AC=BD,可得四边形ABCD是矩形;
    故选:B.
    此题考查矩形的判定,解题关键在于掌握判定法则
    5、D
    【解析】
    根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心可得答案.
    【详解】
    A、不是中心对称图形,故此选项错误;
    B、不是中心对称图形,故此选项错误;
    C、不是中心对称图形,故此选项错误;
    D、是中心对称图形,故此选项正确;
    故选:D.
    本题考查了中心对称图形,解题的关键是掌握中心对称图形的定义.
    6、A
    【解析】
    【分析】按照配方法的步骤进行求解即可得答案.
    【详解】2x2-6x+1=0,
    2x2-6x=-1,
    x2-3x=,
    x2-3x+=+
    (x-)2=,
    故选A.
    【点睛】本题考查了配方法解一元二次方程,配方法的一般步骤:
    (1)把常数项移到等号的右边;
    (2)把二次项的系数化为1;
    (3)等式两边同时加上一次项系数一半的平方.
    7、B
    【解析】
    设白球个数为个,白球数量袋中球的总数=1-14=1.6,求得
    【详解】
    解:设白球个数为个,
    根据题意得,白球数量袋中球的总数=1-14=1.6,
    所以,
    解得
    故选B
    本题主要考查了用评率估计概率.
    8、B
    【解析】
    根据函数的定义即可解答.
    【详解】
    对于x的每一个取值,y都有唯一确定的值,y是x的函数,
    ∵选项A、C、D ,当x取值时,y有唯一的值对应;选项B,当x=2时,y=±1,y由两个值,
    ∴选项B中,y不是x的函数.
    故选B.
    本题考查了函数的定义,熟练运用函数的定义是解决问题的关键,
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1.
    【解析】
    将原函数解析式变形为一般式,结合一次函数图象在y轴上的截距,即可得出关于b的一元一次方程,解之即可得出结论.
    【详解】
    ∵y=2(x﹣2)+b=2x+b﹣4,且一次函数y=2(x﹣2)+b的图象在y轴上的截距为5,
    ∴b﹣4=5,
    解得:b=1.
    故答案为:1.
    本题考查了一次函数图象上点的坐标特征,牢记截距的定义是解题的关键.
    10、②③
    【解析】
    根据菱形的性质可知AC⊥BD,所以在Rt△AFP中,AF一定大于AP,从而判断①;设∠BAE=x,然后根据等腰三角形两底角相等表示出∠ABE,再根据菱形的邻角互补求出∠ABE,根据三角形内角和定理列出方程,求出x的值,求出∠BFE和∠BE的度数,从而判断②③.
    【详解】
    解:在菱形ABCD中,AC⊥BD,
    ∴在Rt△AFP中,AF一定大于AP,故①错误;
    ∵四边形ABCD是菱形,
    ∴AD∥BC,
    ∴∠ABE+∠BAE+∠EAD=180°,
    设∠BAE=x°,
    则∠EAD=2x°,∠ABE=180°-x°-2x°,
    ∵AB=AE,∠BAE=x°,
    ∴∠ABE=∠AEB=180°-x°-2x°,
    由三角形内角和定理得:x+180-x-2x+180-x-2x=180,
    解得:x=36,
    即∠BAE=36°,
    ∠BAE=180°-36°-2×36°=70°,
    ∵四边形ABCD是菱形,
    ∴∠BAD=∠CBD=∠ABE=36°,
    ∴∠BFE=∠ABD+∠BAE=36°+36°=72°,
    ∴∠BEF=180°-36°-72°=72°,
    ∴BE=BF=AF.故③正确
    ∵∠AFD=∠BFE=72°,∠EAD=2x°=72°
    ∴∠AFD=∠EAD
    ∴AD=FD
    又∵AD=AB=AE
    ∴AE=FD,故②正确
    ∴正确的有②③
    故答案为:②③
    本题考查了菱形的性质,等腰三角形的性质,熟记各性质并列出关于∠BAE的方程是解题的关键,注意:菱形的对边平行,菱形的对角线平分一组对角.
    11、;
    【解析】
    首先计算平均数,再利用方差的公式计算即可.
    【详解】
    根据题意可得平均数
    所以
    故答案为1
    本题主要考查方差的计算公式,应当熟练掌握,这是数据统计里一个比较重要的概念.
    12、3,5.4,6,6.5
    【解析】
    作CD⊥AB于D,根据勾股定理可求CD,BD的长度,分BP=BC,CP=BP,BC=CP三种情况讨论,可得t的值
    【详解】
    点在上,时,秒;
    点在上,时,过点作交于点,

    点在上,时,
    ④点在上,时,过点作交于点,
    为的中位线

    本题考查了勾股定理,等腰三角形的性质,关键是利用分类思想解决问题.
    13、
    【解析】
    有两函数的交点为(m,n),将(m,n)代入一次函数与反比例函数解析式中得到mn与n-m的值,所求式子通分并利用同分母分式的减法法则计算,将各自的值代入计算即可求出值.
    【详解】
    解:∵函数y=x﹣1与的图象的交点坐标为(m,n),
    ∴将x=m,y=n代入反比例解析式得:n= ,即mn=2,
    代入一次函数解析式得:n=m﹣1,即n﹣m=﹣1,
    ∴,
    故答案为﹣ .
    此题考查反比例函数与一次函数的交点问题,解题关键在于把交点代入解析式
    三、解答题(本大题共5个小题,共48分)
    14、(1)见解析;(2)∠ABC=45°.
    【解析】
    (1)根据勾股定理作出边长为的正方形即可得;
    (2)连接AC,根据勾股定理逆定理可得△ABC是以AC、BC为腰的等腰直角三角形,据此可得答案.
    【详解】
    (1)如图1所示:
    (2)如图2,连AC,则
    ∵,即BC2+AC2=AB2,∴△ABC为直角三角形,∠ACB=90°,∴∠ABC=∠CAB=45°.
    本题考查了作图﹣基本作图,解题的关键是掌握勾股定理及其逆定理和正方形的判定和性质.
    15、(1)1;(2)1;(3)3;(4)
    【解析】
    利用一次函数和分段函数的性质,结合图象信息,一一解答即可.
    【详解】
    解:(1)由图象可知,乙出发时,乙与甲相距1千米.
    故答案为:1.
    (2))由图象可知,走了一段路程后,乙有事耽搁,停下来的时间为:1.5-0.5=1小时;
    故答案为:1.
    (3)由图象可知,甲从出发起,经过3小时与乙相遇.
    故答案为:3.
    (4)甲行走的平均速度是:(22.5-1)÷3=千米/小时.
    本题考查一次函数的应用、路程、速度、时间的关系等知识,解题的关键是灵活运用图中信息解决问题,所以中考常考题型.
    16、(1);(2)见解析,AB、CD、EF三条线段的长能成为一个直角三角形三边的长,理由见解析
    【解析】
    (1)直接利用勾股定理得出AB的长;
    (2)直接利用勾股定理以及勾股定理逆定理分析得出答案.
    【详解】
    (1)线段AB的长是:=;
    故答案为:;
    (2)如图所示:EF即为所求,
    AB、CD、EF三条线段的长能成为一个直角三角形三边的长
    理由:∵AB2=()2=5,DC2=8,EF2=13,
    ∴AB2+DC2=EF2,
    ∴AB、CD、EF三条线段的长能成为一个直角三角形三边的长.
    此题主要考查了勾股定理以及勾股定理逆定理,正确结合网格分析是解题关键.
    17、(1)填表见解析;(2)丙;①丙电影得分的平均数最高;②丙电影得分没有低分.
    【解析】
    (1)根据众数、中位数和平均数的定义,结合条形图分别求解可得;
    (2)从平均数、中位数和众数的意义解答,合理即可.
    【详解】
    (1)甲电影的众数为5分,
    乙电影的样本容量为35+30+13+12=100,中位数是=4分,
    丙电影的平均数为=(3)78分
    补全表格如下表所示:
    甲、乙、丙三部电影评分情况统计表
    (2)丙,①丙电影得分的平均数最高;②丙电影得分没有低分.
    此题考查了条形统计图,表格,中位数,众数,平均数,弄清题意是解本题的关键.
    18、 (1) 甲的众数和中位数都是7分;(2) 选乙运动员更合适,理由见解析
    【解析】
    (1)观察表格可知甲运动员测试成绩的众数和中位数都是7分;
    (2)分别求得数据的平均数,然后结合方差作出判断即可.
    【详解】
    (1)甲运动员测试成绩中7出现的次数最多,故众数为7;
    成绩排序为:5,6,7,7,7,7,7,8,8,8,
    所以甲的中位数为=7,
    所以甲的众数和中位数都是7分.
    (2)∵=(7+6+8+7+7+5+8+7+8+7)=7(分),
    =(6+6+7+7+7+7+7+7+8+8)=7(分),
    =(5×2+6×4+7×3+8×1)=6.3(分),
    ∴=,S甲2>S乙2,
    ∴选乙运动员更合适.
    本题考查列表法、条形图、折线图、中位数、平均数、方差等知识,熟练掌握基本概念是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(8,3)
    【解析】
    根据30度直角三角形的性质得到AD,由勾股定理得到DO,再根据平行线的性质即可得到答案.
    【详解】
    ∵点A坐标为(﹣3,0)
    ∴AO=3
    ∵∠ADO=30°,AO⊥DO
    ∴AD=2AO=6,
    ∵DO=
    ∴DO=3
    ∴D(0,3)
    ∵四边形ABCD是平行四边形
    ∴AB=CD=8,AB∥CD
    ∴点C坐标(8,3)
    故答案为(8,3)
    本题考查30度直角三角形的性质、勾股定理和平行线的性质,解题的关键是掌握30度直角三角形的性质、勾股定理和平行线的性质.
    20、
    【解析】
    由在一个不透明的布袋中装有8个白球和4个红球,它们除了颜色不同外,其余均相同,直接利用概率公式求解即可求得答案.
    【详解】
    ∵在一个不透明的布袋中装有8个白球和4个红球,它们除了颜色不同外,其余均相同.
    ∴从中随机摸出一个球,摸到红球的概率是:
    故答案为:
    此题考查概率公式,掌握运算法则是解题关键
    21、(-2,0)
    【解析】
    令纵坐标为0代入解析式中即可.
    【详解】
    当y=0时,0=x+2,解得:x=-2,
    ∴直线y=x+2与x轴的交点坐标为(-2,0).
    点睛:本题主要考查了一次函数与坐标轴的交点问题,关键在于理解在x轴上的点的纵坐标为0.
    22、
    【解析】
    根据勾股定理和已知条件,找出线段长度的变化规律,从而求出的长度,然后根据三角形的面积公式求面积即可.
    【详解】
    解:∵OP=1,过P作PP1⊥OP且PP1=1,得OP1=
    再过P1作P1P2⊥OP1且P1P2=1,得OP2=
    又过P2作P2P3⊥OP2且P2P3=1,得OP3=
    ∴PnPn+1=1,OPn=
    ∴P2014P2015=1,OP2014=
    ∴=P2014P2015·OP2014=
    故答案为:.
    此题考查的是利用勾股定理探索规律题,找到线段长度的变化规律并归纳公式是解决此题的关键.
    23、x≥-3且x≠1
    【解析】
    根据二次根式有意义的条件可得x+3≥0,根据零次幂底数不为零可得x-1≠0,求解即可.
    【详解】
    解:由题意得:x+3≥0,且x-1≠0,
    解得:x≥-3且x≠1.
    故答案为x≥-3且x≠1.
    此题主要考查了二次根式和零次幂,关键是掌握二次根式中的被开方数是非负数;a0=1(a≠0).
    二、解答题(本大题共3个小题,共30分)
    24、(1)y=200x+74000(10≤x≤30);(2)将30台乙型收割机全部派往A地区,20台甲型收割机全部派往B地区,这样公司每天获得租金最高,理由见解析.
    【解析】
    (1)根据未知量,找出相关量,列出函数关系式;
    (2)利用不等式的性质进行求解,对x进行分类即可;根据一次函数的单调性可直接判断每天获得租金最高的方案,得出结论.
    【详解】
    解:(1)由于派往A地的乙型收割机x台,则派往B地的乙型收割机为(30-x)台,派往A,B地区的甲型收割机分别为(30-x)台和(x-10)台.
    ∴y=1600x+1200(30-x)+1800(30-x)+1600(x-10)=200x+74000(10≤x≤30).
    (2)由题意,得200x+74000≥79600,解得x≥28,
    ∵10≤x≤30,x是正整数,∴x=28、29、30
    ∴有3种不同分派方案:
    ①当x=28时,派往A地区的甲型收割机2台,乙型收割机28台,余者全部派往B地区;
    ②当x=29时,派往A地区的甲型收割机1台,乙型收割机29台,余者全部派往B地区;
    ③当x=30时,派往A地区的甲型收割机0台,乙型收割机30台,余者全部派往B地区;∵y=200x+74000中,
    ∴y随x的增大而增大,∴当x=30时,y取得最大值,
    此时,y=200×30+74000=80000,
    ∴农机租赁公司将30台乙型收割机全部派往A地区,20台甲型收割机全部派往B地区,这样公司每天获得租金最高,最高租金为80000元.
    故答案为:(1)y=200x+74000(10≤x≤30);(2)将30台乙型收割机全部派往A地区,20台甲型收割机全部派往B地区,这样公司每天获得租金最高,理由见解析.
    本题考查利用一次函数解决实际问题,解题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.
    25、 (1) k≤5 ;(2) 3.
    【解析】
    (1)根据判别式的意义得到△=22-4(k-4)≥0,然后解不等式即可;
    (2)利用方程解的定义得到k2+3k=4,再变形得到2k2+6k-5=2(k2+3k)-5,然后利用整体代入的方法计算.
    【详解】
    (1)∵有实数根,
    ∴Δ≥0
    即.
    ∴k≤5
    (2)∵k是方程的一个根,


    =3
    本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.
    26、(1)CE+CF=AB;(2);(3)CF−CE =O`C.
    【解析】
    (1)如图1中,连接EF,在CO上截取CN=CF,只要证明△OFN≌△EFC,即可推出CE+CF=OC,再证明OC= AB即可.
    (2)先证明△OBE≌△OCF得到BE=CF,在Rt△CEF中,根据CE +CF=EF即可解决问题.
    (3)结论:CF-CE=O`C,过点O`作O`H⊥AC交CF于H,只要证明△FO`H≌△EOC,推出FH=CE,再根据等腰直角三角形性质即可解决问题.
    【详解】
    (1)结论CE+CF=AB.
    理由:如图1中,连接EF,在CO上截取CN=CF.
    ∵∠EOF+∠ECF=180°,
    ∴O、E. C. F四点共圆,
    ∵∠ABC=60°,四边形ABCD是菱形,
    ∴∠BCD=180°−∠ABC=120°,
    ∴∠ACB=∠ACD=60°,
    ∴∠OEF=∠OCF,∠OFE=∠OCE,
    ∴∠OEF=∠OFE=60°,
    ∴△OEF是等边三角形,
    ∴OF=FE,
    ∵CN=CF,∠FCN=60°,
    ∴△CFN是等边三角形,
    ∴FN=FC,∠OFE=∠CFN,
    ∴∠OFN=∠EFC,
    在△OFN和△EFC中,

    ∴△OFN≌△EFC,
    ∴ON=EC,
    ∴CE+CF=CN+ON=OC,
    ∵四边形ABCD是菱形,∠ABC=60°,
    ∴∠CBO=30°,AC⊥BD,
    在RT△BOC中,∵∠BOC=90°,∠OBC=30°,
    ∴OC=BC=AB,
    ∴CE+CF=AB.
    (2)连接EF
    ∵在菱形ABCD中,∠ABC=90°,
    ∴菱形ABCD是正方形,
    ∴∠BOC=90°,OB=OC,AB=AC,∠OBE=∠OCF=45°,∠BCD=90°
    ∵∠EOF+∠BCD=180°,
    ∴∠EOF=90°,
    ∴∠BOE=∠COF
    ∴△OBE≌△OCF,
    ∴BE=CF,
    ∵BE=,
    ∴CF=,
    在Rt△ABC中,AB+BC=AC,AC=4
    ∴BC=4,
    ∴CE= ,
    在Rt△CEF中,CE+CF=EF,
    ∴EF=
    答:线段EF的长为,
    (3)结论:CF−CE=O`C.
    理由:过点O`作O`H⊥AC交CF于H,
    ∵∠O`CH=∠O`HC=45°,
    ∴O`H=O`C,
    ∵∠FO`E=∠HO`C,
    ∴∠FO`H=∠CO`E,
    ∵∠EO`F=∠ECF=90°,
    ∴O`.C. F. E四点共圆,
    ∴∠O`EF=∠OCF=45°,
    ∴∠O`FE=∠O`EF=45°,
    ∴O`E=O`F,
    在△FO`H和△EO`C中,

    ∴△FO`H≌△EOC,
    ∴FH=CE,
    ∴CF−CE=CF−FH=CH=O`C.
    本题考查正方形的性质、全等三角形的判定和性质、勾股定理、四点共圆等知识,解题的关键是发现四点共圆,添加辅助线构造全等三角形,属于中考压轴题.
    题号





    总分
    得分
    电影
    样本容量
    平均数
    众数
    中位数

    100
    (3)45
    5

    (3)66
    5

    100
    3
    (3)5
    测试序号
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    成绩(分)
    7
    6
    8
    7
    7
    5
    8
    7
    8
    7
    电影
    样本容量
    平均数
    众数
    中位数

    100
    (3)45
    5
    5

    100
    (3)66
    5
    4

    100
    (3)78
    3
    (3)5

    相关试卷

    2024年山西省运城市盐湖区九年级数学第一学期开学监测试题【含答案】:

    这是一份2024年山西省运城市盐湖区九年级数学第一学期开学监测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年山西省运城市实验中学九年级数学第一学期开学联考试题【含答案】:

    这是一份2024年山西省运城市实验中学九年级数学第一学期开学联考试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年山西省吕梁市数学九年级第一学期开学综合测试试题【含答案】:

    这是一份2024年山西省吕梁市数学九年级第一学期开学综合测试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map