|试卷下载
终身会员
搜索
    上传资料 赚现金
    云南省红河哈尼族彝族自治州建水县2025届九上数学开学统考试题【含答案】
    立即下载
    加入资料篮
    云南省红河哈尼族彝族自治州建水县2025届九上数学开学统考试题【含答案】01
    云南省红河哈尼族彝族自治州建水县2025届九上数学开学统考试题【含答案】02
    云南省红河哈尼族彝族自治州建水县2025届九上数学开学统考试题【含答案】03
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    云南省红河哈尼族彝族自治州建水县2025届九上数学开学统考试题【含答案】

    展开
    这是一份云南省红河哈尼族彝族自治州建水县2025届九上数学开学统考试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列几红数中,是勾股数的有( ).
    ①5、12、13;②13、14、15;③3k、4k、5k(k为正整数);④、2、.
    A.1组B.2组C.3组D.4组
    2、(4分)函数y=中自变量x的取值范围是( )
    A.x≠2B.x≠0C.x≠0且x≠2D.x>2
    3、(4分)正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=x+k的图象大致是( )
    A.B.C.D.
    4、(4分)下列各点中,与点(-3,4)在同一个反比例函数图像上的点是
    A.(2,-3)B.(3,4)C.(2,-6)D.(-3,-4)
    5、(4分)如图,在正方形中,相交于点,分别为上的两点,,,分别交于两点,连,下列结论:①;②;③;④ ,其中正确的是( )
    A.①②B.①④C.①②④D.①②③④
    6、(4分)下列等式正确的是( )
    A.B.C.D.
    7、(4分)如图,已知两直线l1:y=x和l2:y=kx﹣5相交于点A(m,3),则不等式x≥kx﹣5的解集为( )
    A.x≥6B.x≤6C.x≥3D.x≤3
    8、(4分)下列计算正确的是( )
    A.B.=3C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图 ,D 为△ABC 的 AC 边上的一点,∠A=∠DBC=36°,∠C=72°,则图中 共有等腰三角形____个.
    10、(4分)顺次连接等腰梯形各边中点所得的四边形是_____.
    11、(4分)如图,已知Rt△ABC中,两条直角边AB=3,BC=4,将Rt△ABC绕直角顶点B旋转一定的角度得到Rt△DBE,并且点A落在DE边上,则△BEC的面积=__________________
    12、(4分)在正数范围内定义一种运算“※”,其规则为,如.根据这个规则可得方程的解为__________.
    13、(4分)已知一组数据1,2,0,﹣1,x,1的平均数是1,那么这组数据的方差是__.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)请阅读,并完成填空与证明:
    初二(8)、(9)班数学兴趣小组展示了他们小组探究发现的结果,内容为:图1,正三角形中,在,边上分别取,,使,连接,,发现利用“”证明≌,可得到,,再利用三角形的外角定理,可求得
    (1)图2正方形中,在,边上分别取,,使,连接,,那么 ,且 度,请证明你的结论.
    (2)图3正五边形中,在,边上分别取,,使,连接,,那么 ,且 度;
    (3)请你大胆猜测在正边形中的结论:
    15、(8分)八年级物理兴趣小组20位同学在实验操作中的得分如表:
    (1)求这20位同学实验操作得分的众数,中位数;
    (2)这20位同学实验操作得分的平均分是多少?
    16、(8分)如图,在平行四边形ABCD中,E、F分别是BC、AD上的点,且AE∥CF,求证:AE=CF
    17、(10分)为了了解某校初中各年级学生每天的平均睡眠时间(单位:h,精确到1h),抽样调查了部分学生,并用得到的数据绘制了下面两幅不完整的统计图.
    请你根据图中提供的信息,回答下列问题:
    (1)求出扇形统计图中百分数a的值为 ,所抽查的学生人数为 .
    (2)求出平均睡眠时间为8小时的人数,并补全频数直方图.
    (3)求出这部分学生的平均睡眠时间的众数和平均数.
    (4)如果该校共有学生1200名,请你估计睡眠不足(少于8小时)的学生数.
    18、(10分)如图
    如图1,四边形ABCD和四边形BCMD都是菱形,
    (1)求证:∠M=60°
    (2)如图2,点E在边AD上,点F在边CM上,连接EF交CD于点H,若AE=MF,求证:EH=HF;
    (3)如图3,在第(2)小题的条件下,连接BH,若EF⊥CM,AB=3,求BH的长
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图所示,△ABC为等边三角形,D为AB的中点,高AH=10 cm,P为AH上一动点,则PD+PB的最小值为_______cm.
    20、(4分)化简b  0  _______.
    21、(4分)若分式的值为0,则的值是 _____.
    22、(4分)已知分式方程+=,设,那么原方程可以变形为__________
    23、(4分)已知,点P在轴上,则当轴平分时,点P的坐标为______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,的顶点均在格点上,点 坐标为.
    (1)画出关于轴对称的;
    (2)画出将绕原点逆时针旋转90°所得的;
    (3)与能组成轴对称图形吗?若能,请你画出所有的对称轴.
    25、(10分)如图,在△ABC中,AB=AC,AD平分∠BAC交BC于点D,在线段AD上任到一点P(点A除外),过点P作EF∥AB,分别交AC、BC于点E、F,作PQ∥AC,交AB于点Q,连接QE与AD相交于点G.
    (1)求证:四边形AQPE是菱形.
    (2)四边形EQBF是平行四边形吗?若是,请证明;若不是,请说明理由.
    (3)直接写出P点在EF的何处位置时,菱形AQPE的面积为四边形EQBF面积的一半.
    26、(12分)计算或解方程


    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    勾股数是满足a2+b2=c2 的三个正整数,据此进行判断即可.
    【详解】
    解:∵满足a2+b2=c2 的三个正整数,称为勾股数,
    ∴是勾股数的有①5、12、13;③3k、4k、5k(k为正整数).
    故选:B.
    本题主要考查了勾股定理的逆定理,一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.
    2、A
    【解析】
    根据分母不为0列式求值即可.
    【详解】
    由题意得x﹣1≠0,
    解得:x≠1.
    故选:A.
    此题主要考查函数的自变量取值,解题的关键是熟知分母不为零.
    3、B
    【解析】
    通过一次函数的定义即可解答.
    【详解】
    解:已知正比例函数y=kx(k≠0)的函数值y随x的增大而增大,
    故k>0,
    即一次函数y=x+k的图象过一二三象限,
    答案选B.
    本题考查一次函数的定义与性质,熟悉掌握是解题关键.
    4、C
    【解析】
    先根据反比例函数中k=xy的特点求出k的值,再对各选项进行逐一检验即可.
    【详解】
    ∵反比例函数y=kx过点(−3,4),
    ∴k=(−3)×4=−12,
    A. ∵2×3=6≠−12,∴此点不与点(−3,4)在同一个反比例函数图象上,故本选项错误;
    B. ∵3×4=12≠−12,∴此点不与点(−3,4)在同一个反比例函数图象上,故本选项错误;
    C. ∵2×-6=−12,∴此点与点(−3,4)在同一个反比例函数图象上,故本选项正确;
    D. ∵(−3)×(−4)=12≠−12,∴此点不与点(−3,4)在同一个反比例函数图象上,故本选项错误。
    故选C.
    此题考查反比例函数图象上点的坐标特征,解题关键在于求出k的值
    5、D
    【解析】
    ①易证得△ABE≌△BCF(ASA),则可得结论①正确;
    ②由△ABE≌△BCF,可得∠FBC=∠BAE,证得∠BAE+∠ABF=90°即可知选项②正确;
    ③根据△BCD是等腰直角三角形,可得选项③正确;
    ④证明△OBE≌△OCF,根据正方形的对角线将面积四等分,即可得出选项④正确.
    【详解】
    解:①∵四边形ABCD是正方形,
    ∴AB=BC,∠ABE=∠BCF=90°,
    在△ABE和△BCF中,AB=BC,∠ABE=∠BCF,BE=CF,
    ∴△ABE≌△BCF(SAS),
    ∴AE=BF,
    故①正确;
    ②由①知:△ABE≌△BCF,
    ∴∠FBC=∠BAE,
    ∴∠FBC+∠ABF=∠BAE+∠ABF=90°,
    ∴AE⊥BF,
    故②正确;
    ③∵四边形ABCD是正方形,
    ∴BC=CD,∠BCD=90°,
    ∴△BCD是等腰直角三角形,
    ∴BD=BC,
    ∴CE+CF=CE+BE=BC=,
    故③正确;
    ④∵四边形ABCD是正方形,
    ∴OB=OC,∠OBE=∠OCF=45°,
    在△OBE和△OCF中,OB=OC,∠OBE=∠OCF,BE=CF,
    ∴△OBE≌△OCF(SAS),
    ∴S△OBE=S△OCF,
    ∴S四边形OECF=S△COE+S△OCF=S△COE+S△OBE=S△OBC=S正方形ABCD,
    故④正确;
    故选:D.
    此题考查了正方形的性质,全等三角形的判定与性质以及等腰直角三角形的性质.注意掌握全等三角形的判定与性质是解此题的关键.
    6、B
    【解析】
    根据平方根、算术平方根的求法,对二次根式进行化简即可.
    【详解】
    A.=2,此选项错误;
    B.=2,此选项正确;
    C. =﹣2,此选项错误;
    D.=2,此选项错误;
    故选:B.
    本题考查了二次根式的化简和求值,是基础知识比较简单.
    7、B
    【解析】
    首先利用待定系数法求出A点坐标,再以交点为分界,结合图象写出不等式
    x≥kx-5的解集即可.
    【详解】
    解:将点A(m,3)代入y=得,=3,
    解得,m=1,
    所以点A的坐标为(1,3),
    由图可知,不等式
    ≥kx-5的解集为x≤1.
    故选:B.
    此题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.关键是求出A点坐标以及利用数形结合的思想.
    8、D
    【解析】
    根据二次根式的运算法则逐一计算可得.
    【详解】
    解:A、、不是同类二次根式,不能合并,此选项错误;
    B、3﹣=2,此选项错误;
    C、×=,此选项错误;
    D、=,此选项正确;
    故选D.
    本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的运算法则.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    由∠C=72゜,∠A=∠DBC=16゜,根据三角形内角和定理与三角形外角的性质,可求得∠ABD=∠A=16°,∠ABC=∠BCD=∠BDC=72°,继而求得答案.
    【详解】
    解:∵∠C=72゜,∠A=∠DBC=16゜,
    ∴∠BDC=180°-∠DBC-∠C=72°=∠C,
    ∴BC=BD,即△BCD是等腰三角形;
    ∴∠ABD=∠BDC-∠A=16°=∠A,
    ∴AD=BD,即△ABD是等腰三角形;
    ∴∠ABC=∠ABD+∠DBC=72°=∠C,
    ∴AB=AC,即△ABC是等腰三角形.
    故答案为:1.
    此题考查了等腰三角形的判定、三角形的外角的性质以及三角形内角和定理.此题难度不大,注意掌握数形结合思想的应用.
    10、菱形
    【解析】
    解:顺次连接等腰梯形各边中点所得的四边形是菱形,理由为:
    已知:等腰梯形ABCD,E、F、G、H分别为AD、AB、BC、CD的中点,
    求证:四边形EFGH为菱形.
    证明:连接AC,BD,
    ∵四边形ABCD为等腰梯形,
    ∴AC=BD,
    ∵E、H分别为AD、CD的中点,
    ∴EH为△ADC的中位线,
    ∴EH=AC,EH∥AC,
    同理FG=AC,FG∥AC,
    ∴EH=FG,EH∥FG,
    ∴四边形EFGH为平行四边形,
    同理EF为△ABD的中位线,
    ∴EF=BD,又EH=AC,且BD=AC,
    ∴EF=EH,
    则四边形EFGH为菱形.
    故答案为菱形.
    11、.
    【解析】
    过B作BP⊥AD于P,BQ⊥AC于Q,依据∠BAD=∠BAC,即AB平分∠DAC,可得BP=BQ,进而得出BP=,AD=,S△ABD=AD×BP=,再根据△ABD∽△CBE,可得,即可得到S△CBE=.
    【详解】
    如图,过B作BP⊥AD于P,BQ⊥AC于Q,
    由旋转可得,∠CAB=∠D,BD=BA=3,
    ∴∠D=∠BAD,
    ∴∠BAD=∠BAC,即AB平分∠DAC,
    ∴BP=BQ,
    又∵Rt△ABC中,AB=3,BC=4,
    ∴AC=5,BQ=,
    ∴BP=,
    ∴Rt△ABP中,AP=,
    ∴AD=,
    ∴S△ABD=AD×BP=,
    由旋转可得,∠ABD=∠CBE,DB=AB,EB=CB,
    ∴△ABD∽△CBE,
    ∴,即,
    解得S△CBE=,
    故答案为.
    此题考查了旋转的性质、等腰三角形的性质以及相似三角形的判定与性质.此题注意掌握旋转前后图形的对应关系,注意相似三角形的面积之比等于相似比的平方.
    12、
    【解析】
    运算“※”的意思是两数的倒数之和.由于是在正数范围内,所以-2可看作※后面的x的系数,根据新定义列出式子计算即可.
    【详解】
    ∵,
    ∴,
    去分母得:,
    解得:
    经检验是原方程的解.
    故答案为.
    本题除了定义运算外,还考查简单的分式方程的解法.
    13、
    【解析】
    先由平均数的公式计算出x的值,再根据方差的公式计算.一般地设n个数据,x1,x2,…xn的平均数为Z,则方差S2= [(x1﹣)2+(x2﹣)2+…+(xn﹣)2].
    【详解】
    x=1×6﹣1﹣2﹣0﹣(﹣1)﹣1=3
    s2= [(1﹣1)2+(2﹣1)2+(0﹣1)2+(﹣1﹣1)2+(3﹣1)2+(1﹣1)2]=.
    故答案为.
    本题考查了方差的定义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(xn﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
    三、解答题(本大题共5个小题,共48分)
    14、(1); ;证明详见解析;(2) ;;(3)对于正n边形,结论为:,
    【解析】
    (1)利用SAS证出≌,从而证出,,然后利用等量代换即可得出结论;
    (2)先求出正五边形的每个内角的度数,利用SAS证出≌,从而证出,,然后利用等量代换即可得出结论;
    (3)根据题意,画出图形,然后根据(1)(2)的方法推出结论即可.
    【详解】
    (1) ,且度.证明如下:
    ∵四边形是正方形
    ∴,
    在△ABN和△DAM中
    ∴≌
    ∴,


    故答案为:; ;
    (2) 且度.证明如下:
    正五边形的每个内角为:,
    ∴,
    在△ABN和△EAM中
    ∴≌
    ∴,


    故答案为:; ;
    (3)设这个正n边形为,在,边上分别取,,使,连接,,和交于点O,如下图所示:
    正n边形的每个内角为:,
    ∴,
    在和中
    ∴≌
    ∴,


    即对于正n边形,结论为:,.
    此题考查的是全等三角形的判定及性质和多边形的内角和,掌握全等三角形的判定及性质和多边形的内角和公式是解决此题的关键.
    15、(1)众数是9分,中位数是9分;(2)这20位同学的平均得分是8.75分
    【解析】
    (1)众数是指一组数据中出现次数最多的数,而中位数是指在将一组数据按照大小顺序排列后位于中间的那个数或位于中间的两个数的平均数,据此进一步求解即可;
    (2)根据平均数的计算公式进一步加以计算即可.
    【详解】
    (1)∵9分的有8个人,人数最多,
    ∴众数是9分;
    把这些数从小到大排列,中位数是第10、11个数的平均数,
    ∴中位数是(分);
    (2)根据题意得:(分)
    答:这20位同学的平均得分是8.75分.
    本题主要考查了众数、中位数的定义与平均数的计算,熟练掌握相关概念是解题关键.
    16、见解析
    【解析】
    根据一组对边平行且相等的四边形是平行四边形,证明AF=EC,AF∥EC即可.
    【详解】
    证明:∵四边形ABCD是平行四边形,
    且E、F分别是BC、AD上的点,
    ∴AF=EC,
    又∵四边形ABCD是平行四边形,
    ∴AD∥BC,即AF∥EC.
    ∴四边形AFCE是平行四边形,
    ∴AE=CF.
    本题考查了平行四边形的判断方法,平行四边形可以从边、角、对角线三方面进行判定,在选择判断方法时,要根据题目现有的条件,选择合理的判断方法.
    17、(1)45%,60;(2)见解析18;(3)7,7.2;(4)780
    【解析】
    (1)根据睡眠时间为6小时、7小时、8小时、9小时的百分比之和为1可得a的值,用睡眠时间为6小时的人数除以所占的比例即可得到抽查的学生人数;
    (2)用抽查的学生人数乘以睡眠时间为8小时所占的比例即可得到结果;
    (3)根据众数,平均数的定义即可得到结论;
    (4)用学生总数乘以抽样中睡眠不足(少于8小时)的学生数所占的比例列式计算即可.
    【详解】
    (1)a=1﹣20%﹣30%﹣5%=45%;
    所抽查的学生人数为:3÷5%=60(人).
    故答案为:45%,60;
    (2)平均睡眠时间为8小时的人数为:60×30%=18(人);
    (3)这部分学生的平均睡眠时间的众数是7人,
    平均数7.2(小时);
    (4)1200名睡眠不足(少于8小时)的学生数1200=780(人).
    本题考查了频数(率)分布直方图,扇形统计图,以及用样本估计总体,弄清题意是解答本题的关键.
    18、(1)证明见解析 (2)证明见解析 (3)
    【解析】
    (1)利用菱形的四条边相等,可证CD=DM=CM=AD,就可得到△CDM是等边三角形,再利用等边三角形的三个角都是60°,就可求出∠M的度数;
    (2)过点E作EG∥CM交CD的延长线于点G,可得到∠G=∠HCF,先证明△EDG是等边三角形,结合已知条件证明EG=CF,利用AAS证明△EGH≌△FCH,再根据全等三角形的对应边相等,可证得结论;
    (3)设BD,EF交于点N,根据前面的证明可知BD=CD=AB=3,∠M=∠CDM=60°,DE=CF,再利用垂直的定义及三角形内角和定理可求出∠HED,∠EHD的度数,从而利用等腰三角形的判定和性质,可证得ED=DH=CF,可推出CD=3DH,就可求出DH的长,然后利用解直角三角形分别求出BN,NH的长,再利用勾股定理就可求出BH的长.
    【详解】
    (1)证明:∵ 四边形ABCD和四边形BCMD都是菱形,
    ∴BC=CD=AD,BC=DM=CM
    ∴CD=DM=CM=AD,
    ∴△CDM是等边三角形,
    ∴∠M=60°。
    (2)解: 如图2,过点E作EG∥CM交CD的延长线于点G,
    ∴∠G=∠HCF=60°,∠GED=∠M=60°,
    ∴∠G=∠GED=∠EDG=60°,
    ∴△EDG是等边三角形
    ∴EG=DE;
    ∵AD=CM,AE=MF,
    ∴DE=CF,
    ∴EG=CF;
    在△EGH和△FCH中,
    ∴△EGH≌△FCH(AAS)
    ∴EH=FH.
    (3)解: 如图3,设BD,EF交于点N,
    由(1)(2)的证明过程可知BD=CD=AB=3,∠M=∠CDM=60°,DE=CF,
    ∵EF⊥CM,
    ∴∠EFM=90°,
    ∴∠HED=90°-60°=30°,
    ∠CDM=∠HED+∠EHD=60°
    ∴∠EHD=60°-30°=30°=∠HED=∠CHF
    ∴ED=DH=CF,
    在R△CHF中,∠CHF=30°
    ∴CH=2CH=2DH,
    ∴CD=CH+DH=3DH=3
    解之:DH=CF=1
    ∵菱形CBDM,EF⊥CM
    ∴BD∥CM
    ∴EF⊥BD;
    ∴∠DNH=∠BNH=90°,
    在Rt△DHN中,∠DHN=30°,DH=1
    ∴DN=DHsin∠30°=,
    NH=DHcs30°=;
    ∴BN=BD-DN=3-=,
    在Rt△BHN中,
    BH=.
    本题是四边形综合题目,考查了菱形的性质、等边三角形的判定与性质、相似三角形的判定与性质、平行线的性质、勾股定理、含30°角的直角三角形的性质等知识;本题综合性强,熟练掌握等边三角形的判定与性质是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、10
    【解析】
    连接PC,根据等边三角形三线合一的性质,可得PC=BP,PD+PB要取最小值,应使D、P、C三点一线.
    【详解】
    连接PC,
    ∵△ABC为等边三角形,D为AB的中点,
    ∴PD+PB的最小值为:PD+PB=PC+PD=CD=AH=10cm.
    故答案为:10
    考查轴对称-最短路线问题,等边三角形的性质,找出点P的位置是解题的关键.
    20、
    【解析】
    式子的分子和分母都乘以 即可得出 ,根据b是负数去掉绝对值符号即可.
    【详解】
    ∵b<0,
    ∴=.
    故答案为: .
    此题考查分母有理化,解题关键在于掌握运算法则
    21、1
    【解析】
    分式值为零的条件:分子等于零且分母不等于零,由此列出不等式和等式,求解即可.
    【详解】
    ∵分式的值为0,
    ∴,
    ∴x=1.
    故答案是:1.
    考查了分式的值为零的条件,解题关键是:分式值为零的条件是分子等于零且分母不等于零.
    22、=
    【解析】
    【分析】运用整体换元法可得到结果.
    【详解】设,则分式方程+=,可以变形为=
    故答案为:=
    【点睛】本题考核知识点:分式方程.解题关键点:掌握整体换元方法.
    23、
    【解析】
    作点A关于y轴对称的对称点,求出点的坐标,再求出直线的解析式,将代入直线解析式中,即可求出点P的坐标.
    【详解】
    如图,作点A关于y轴对称的对称点
    ∵,点A关于y轴对称的对称点

    设直线的解析式为
    将点和点代入直线解析式中
    解得
    ∴直线的解析式为
    将代入中
    解得

    故答案为:.
    本题考查了坐标点的问题,掌握角平分线的性质、轴对称的性质、一次函数的性质是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)见解析;(2)见解析;(3)能,图见解析;
    【解析】
    (1)根据网格结构找出点A、B、C关于x轴的对称点A1、B1、C1的位置,然后顺次连接即可;
    (2)根据网格结构找出点A、B、C绕原点O按逆时针旋转90°的对应点A2、B2、C2的位置,然后顺次连接即可;
    (3)从图中可发现成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段,做它的垂直平分线.
    【详解】
    (1)如图所示:
    (2)如图所示:
    (3)成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段,作它的垂直平分线,如图,对称轴有2条.
    此题考查利用旋转变换作图,利用轴对称变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.
    25、(1)见解析;(2)结论:四边形EQBF是平行四边形.见解析;(3)当P为EF中点时,S菱形AEPQ=S四边形EFBQ.
    【解析】
    (1)先证出四边形AEPQ为平行四边形,关键是找一组邻边相等,由AD平分∠BAC和PE∥AQ可证∠EAP=∠EPA,得出AE=EP,即可得出结论;
    (2)只要证明EQ∥BC,EF∥AB即可;
    (3)S菱形AEPQ=EP•h,S平行四边形EFBQ=EF•h,若菱形AEPQ的面积为四边形EFBQ面积的一半,则EP=EF,因此P为EF中点时,S菱形AEPQ=S四边形EFBQ.
    【详解】
    (1)证明:∵EF∥AB,PQ∥AC,
    ∴四边形AEPQ为平行四边形,
    ∴∠BAD=∠EPA,
    ∵AB=AC,AD平分∠CAB,
    ∴∠CAD=∠BAD,
    ∴∠CAD=∠EPA,
    ∴EA=EP,
    ∴四边形AEPQ为菱形.
    (2)解:结论:四边形EQBF是平行四边形.
    ∵四边形AQPE是菱形,
    ∴AD⊥EQ,即∠AGQ=90°,
    ∵AB=AC,AD平分∠BAC,
    ∴AD⊥BC即∠ADB=90°,
    ∴EQ∥BC
    ∵EF∥QB,
    ∴四边形EQBF是平行四边形.
    (3)解:当P为EF中点时, S菱形AEPQ=S四边形EFBQ
    ∵四边形AEPQ为菱形,
    ∴AD⊥EQ,
    ∵AB=AC,AD平分∠BAC,
    ∴AD⊥BC,
    ∴EQ∥BC,
    又∵EF∥AB,
    ∴四边形EFBQ为平行四边形.
    作EN⊥AB于N,如图所示:
    ∵P为EF中点
    则S菱形AEPQ=EP•EN=EF•EN=S四边形EFBQ.
    此题主要考查了菱形的判定与性质、平行四边形的判定与性质、等腰三角形的判定与性质;熟练掌握等腰三角形的性质,证明四边形是平行四边形是解决问题的关键.
    26、(1);(2),
    【解析】
    (1)根据二次根式的加法和乘法的运算法则计算即可
    (2)先化成一般形式,然后运用配方法计算即可
    【详解】
    解:①

    化简得:
    配方得:
    解得:
    ∴,
    本题考查了二次根式的混合运算以及一元二次方程得解法,熟练掌握相关的知识是解题的关键
    题号





    总分
    得分
    批阅人
    得分(分)
    10
    9
    8
    7
    人数(人)
    5
    8
    4
    3
    相关试卷

    2025届云南省石林彝族自治县数学九上开学统考模拟试题【含答案】: 这是一份2025届云南省石林彝族自治县数学九上开学统考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届云南省红河哈尼族彝族自治州泸西县九上数学开学统考模拟试题【含答案】: 这是一份2025届云南省红河哈尼族彝族自治州泸西县九上数学开学统考模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年云南省师宗县数学九上开学统考模拟试题【含答案】: 这是一份2024年云南省师宗县数学九上开学统考模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map