云南省楚雄北浦中学2024-2025学年九上数学开学复习检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,平行四边形ABCD中,AE平分∠BAD交边BC于点E,已知AD=7,CE=3,则AB的长是( )
A.7B.3C.3.5D.4
2、(4分)具备下列条件的三角形中,不是直角三角形的是( )
A.∠A+∠B=∠CB.∠B=∠C=∠A
C.∠A=90°-∠BD.∠A-∠B=90°
3、(4分)约分的结果是( )
A.B.C.D.
4、(4分)下列事件中,属于必然事件的是()
A.经过路口,恰好遇到红灯;B.四个人分成三组,三组中有一组必有2人;
C.打开电视,正在播放动画片;D.抛一枚硬币,正面朝上;
5、(4分)如图,中,,在同一平面内,将绕点A旋转到的位置,使得,则等于( )
A.B.C.D.
6、(4分)如图,在平面直角坐标系中,直线与y轴交于点B(0,4),与x轴交于点A,∠BAO=30°,将△AOB沿直线AB翻折,点O的对应点C恰好落在双曲线y=(k≠0)上,则k的值为( )
A.﹣8B.﹣16C.﹣8D.﹣12
7、(4分)如图所示,正方形ABCD中,E,F是对角线AC上两点,连接BE,BF,DE,DF,则添加下列哪一个条件可以判定四边形BEDF是菱形( )
A.∠1=∠2B.BE=DFC.∠EDF=60°D.AB=AF
8、(4分)下列说法:①“掷一枚质地均匀的硬币,朝上一面可能是正面”;②“从一副普通扑克牌中任意抽取一张,点数一定是3”( )
A.只有①正确B.只有②正确C.①②都正确D.①②都错误
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)比较大小:2____3(填“ >、<、或 = ”).
10、(4分)在函数的图象上有两个点,,则的大小关系是___________.
11、(4分)计算:÷=_____.
12、(4分)如图,在R△ABC中,∠ABC=90°,AB=2,BC=1,BD是AC边上的中线,则BD= ________。
13、(4分)方程=0的解是___.
三、解答题(本大题共5个小题,共48分)
14、(12分)(阅读材料)
解方程:.
解:设,则原方程变为.
解得,,.
当时,,解得.
当时,,解得.
所以,原方程的解为,,,.
(问题解决)
利用上述方法,解方程:.
15、(8分)如图,▱ABCD的对角线AC,BD相交于点O.E,F是AC上的两点,并且AE=CF,连接DE,BF.
(1)求证:△DOE≌△BOF;
(2)若BD=EF,连接DE,BF.判断四边形EBFD的形状,并说明理由.
16、(8分)如图,在中,对角线AC,BD交于点O,E是AD上任意一点,连接EO并延长,交BC于点F,连接AF,CE.
(1)求证:四边形AFCE是平行四边形;
(2)若,°,.
①直接写出的边BC上的高h的值;
②当点E从点D向点A运动的过程中,下面关于四边形AFCE的形状的变化的说法中,正确的是
A.平行四边形→矩形→平行四边形→菱形→平行四边形
B.平行四边形→矩形→平行四边形→正方形→平行四边形
C.平行四边形→菱形→平行四边形→菱形→平行四边形
D.平行四边形→菱形→平行四边形→矩形→平行四边形
17、(10分)如图,在中,分别是的平分线.
求证:四边形是平行四边形.
18、(10分)在平面直角坐标系中,过一点分别作x轴,y轴的垂线,如果由这点、原点及两个垂足为顶点的矩形的周长与面积相等,那么称这个点是平面直角坐标系中的“巧点”.例如,图1中过点P(4,4)分別作x轴,y轴的垂线,垂足为A,B,矩形OAPB的周长为16,面积也为16,周长与面积相等,所以点P是巧点.请根据以上材料回答下列问题:
(1)已知点C(1,3),D(-4,-4),E(5,-),其中是平面直角坐标系中的巧点的是______;
(2)已知巧点M(m,10)(m>0)在双曲线y=(k为常数)上,求m,k的值;
(3)已知点N为巧点,且在直线y=x+3上,求所有满足条件的N点坐标.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,中,是的中点,平分,于点,若,,则的长度为_____.
20、(4分)函数y=中,自变量x的取值范围是_____.
21、(4分)= ▲ .
22、(4分)已知等腰三角形的周长为24,底边长y关于腰长x的函数表达式(不写出x的取值范围) 是________.
23、(4分)如图,点A的坐标为,点B在直线上运动则线段AB的长度的最小值是___.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图1,在▱ABCD中,点O是对角线AC的中点,EF过点O与AD,BC分别相交于点E,F,GH过点O与AB,CD分别相交于点G,H,连接EG,FG,FH,EH.
(1)求证:四边形EGFH是平行四边形;
(2)如图2,若EF∥AB,GH∥BC,在不添加任何辅助线的情况下,请直接写出图2中与四边形AGHD面积相等的所有的平行四边形.(四边形AGHD除外)
25、(10分)如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F. 求证:△ABF是等腰三角形.
26、(12分)王先生准备采购一批(大于100条)某种品牌的跳绳,采购跳绳有在实体店和网店购买两种方式,通过洽谈,获得了以下信息:
(1)请分别写出王先生在实体店、网店购买跳绳所需的资金y1、y2元与购买的跳绳数x(x>100)条之间的函数关系式;
(2)王先生选取哪种方式购买跳绳省钱?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
先根据角平分线及平行四边形的性质得出∠BAE=∠AEB,再由等角对等边得出BE=AB,从而由EC的长求出BE即可解答.
【详解】
解:∵AE平分∠BAD交BC边于点E,
∴∠BAE=∠EAD,
∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC=7,
∴∠DAE=∠AEB,
∴∠BAE=∠AEB,
∴AB=BE,
∵EC=3,
∴BE=BC-EC=7-3=4,
∴AB=4,
故选D.
本题主要考查了角平分线、平行四边形的性质及等腰三角形的判定,根据已知得出∠BAE=∠AEB是解决问题的关键.
2、D
【解析】
根据三角形内角和定理对各选项进行逐一判断即可.
【详解】
A. ∵∠A+∠B=∠C,∠A+∠B+∠C=180°
∴2∠C=180°,解得∠C=90°,
∴此三角形是直角三角形,故本选项错误;
B. ∵∠B=∠C=∠A,
∴设∠B=∠C=x,则∠A=2x.
∵∠A+∠B+∠C=180°,
∴x+x+2x=180°,解得x=45°,
∴∠A=2x=90°,
∴此三角形是直角三角形,故本选项错误;
C. ∵∠A=90°−∠B,
∴∠A+∠B=90°,
∴此三角形是直角三角形,故本选项错误;
D.∵∠A-∠B=90°,
∴∠A=∠B+90°,
∴此三角形不是直角三角形,故本选项正确.
故答案选D.
本题考查了三角形内角和定理,解题的关键是熟练的掌握三角形内角和定理.
3、C
【解析】
由题意直接根据分式的基本性质进行约分即可得出答案.
【详解】
解:=.
故选:C.
本题考查分式约分,熟练掌握分式的约分法则是解答此题的关键.
4、B
【解析】
分析:必然事件就是一定能发生的事件,根据定义即可作出判断.
详解:A、经过路口,恰好遇到红灯是随机事件,选项错误;
B、4个人分成三组,其中一组必有2人,是必然事件,选项正确;
C、打开电视,正在播放动画片是随机事件,选项错误;
D、抛一枚硬币,正面朝上是随机事件,选项错误.
故选B.
点睛:本题考查了必然事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
5、A
【解析】
根据平行线的性质得到∠ACD=∠CAB=63°,根据旋转变换的性质求出∠ADC=∠ACD=63°,根据三角形内角和定理求出∠CAD=54°,然后计算即可.
【详解】
解:∵DC∥AB,
∴∠ACD=∠CAB=63°,
由旋转的性质可知,AD=AC,∠DAE=∠CAB=63°,
∴∠ADC=∠ACD=63°,
∴∠CAD=54°,
∴∠CAE=9°,
∴∠BAE=54°,
故选:A.
本题考查的是旋转变换,掌握平行线的性质、旋转变换的性质是解题的关键.
6、D
【解析】
首先过C作CD⊥y轴,垂足为D,再根据勾股定理计算CD的长,进而计算C点的坐标,在代入反比例函数的解析式中,进而计算k的值.
【详解】
解:过点C作CD⊥y轴,垂足为D,
由折叠得:OB=BC=4,∠OAB=∠BAC=30°
∴∠OBA=∠CBA=60°=∠CBD,
在Rt△BCD中,∠BCD=30°,
∴BD=BC=2,CD= ,
∴C(﹣,6)代入得:k=﹣×6=﹣
故选:D.
本题主要考查求解反比例函数的解析式,关键在于构造辅助线计算CD的长度.
7、B
【解析】
由正方形的性质,可判定△CDF≌△CBF,则BF=FD=BE=ED,故四边形BEDF是菱形.
【详解】
由正方形的性质知,∠ACD=∠ACB=45°,BC=CD,CF=CF,
∴△CDF≌△CBF,
∴BF=FD,
同理,BE=ED,
∴当BE=DF,有BF=FD=BE=ED,四边形BEDF是菱形.
故选B.
考查了菱形的判定,解题关键是灵活运用全等三角形的判定和性质,及菱形的判定.
8、A
【解析】
根据不可能事件,随机事件,必然事件发生的概率以及概率的意义找到正确选项即可.
【详解】
掷一枚质地均匀的硬币,朝上一面可能是正面,可能是反面,所以①正确;
从一副普通扑克牌中任意抽取一张,点数不一定是3,所以②错误,
故选A.
本题考查了随机事件与确定事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.确定事件包括必然事件和不可能事件:(1)必然事件指在一定条件下一定发生的事件,不可能事件是指在一定条件下,一定不发生的事件.(2)不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、<
【解析】
试题分析:将两式进行平方可得:=12,=18,因为12<18,则<.
10、y1>y2
【解析】
分析:根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质,由k的值判断函数的增减性,由此比较即可.
详解:∵k=-5<0
∴y随x增大而减小,
∵-2<5
∴>.
故答案为:>.
点睛:根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质可知:当k>0,b>0时,图像过一二三象限,y随x增大而增大;当k>0,b<0时,图像过一三四象限,y随x增大而增大;当k<0,b>0时,图像过一二四象限,y随x增大而减小;当k<0,b<0,图像过二三四象限,y随x增大而减小.
11、1
【解析】
直接利用二次根式的除法运算法则得出即可.
【详解】
解:÷==1.
故答案为1.
本题考查二次根式的除法运算,根据二次根式的运算法则得出是解题关键.
12、1.5
【解析】
利用勾股定理求出AC的长,再根据直角三角形斜边上的中线等于斜边的一半,就可求出BD的长.
【详解】
解:在Rt△ABC中,
AC=
∵ BD是AC边上的中线,
∴AC=2BD
∴BD=3÷2=1.5
故答案为:1.5
本题考查的是直角三角形的性质、勾股定理,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.
13、x=5.
【解析】
把两边都平方,化为整式方程求解,注意结果要检验.
【详解】
方程两边平方得:(x﹣3)(x﹣5)=0,
解得:x1=3,x2=5,
经检验,x2=5是方程的解,
所以方程的解为:x=5.
本题考查了无理方程的解法,解含未知数的二次根式只有一个的无理方程时,一般步骤是:①移项,使方程左边只保留含有根号的二次根式,其余各项均移到方程的右边;②两边同时平方,得到一个整式方程;③解整式方程;④验根.
三、解答题(本大题共5个小题,共48分)
14、,,,
【解析】
先变形,再仿照阅读材料换元,求出m的值,再代入求出x即可.
【详解】
解:原方程变为.
设,则原方程变为.
解得,,.
当时,,解得
当时,,解得或3.
所以,原方程的解为,,,.
本题考查解一元二次方程和解高次方程,能够正确换元是解此题的关键.
15、(2)证明见解析;(2)四边形EBFD是矩形.理由见解析.
【解析】
分析:(1)根据SAS即可证明;
(2)首先证明四边形EBFD是平行四边形,再根据对角线相等的平行四边形是矩形即可证明;
【解答】(1)证明:∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD,
∵AE=CF,
∴OE=OF,
在△DEO和△BOF中,
,
∴△DOE≌△BOF.
(2)结论:四边形EBFD是矩形.
理由:∵OD=OB,OE=OF,
∴四边形EBFD是平行四边形,
∵BD=EF,
∴四边形EBFD是矩形.
点睛:本题考查平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
16、(1)见解析;(2)①;②D
【解析】
(1)由四边形ABCD是平行四边形可得AD∥BC,AO=CO,根据“AAS”证明△AOE≌△COF,可得OE=OF,从而可证四边形AFCE是平行四边形;
(2)①作AH⊥BC于点H,根据锐角三角函数的知识即可求出AH的值;
②根据图形结合平行四边形、矩形、菱形的判定逐个阶段进行判断即可.
【详解】
(1)证明:在中,对角线AC,BD相交于点O.
∴,.
∴,.
∴.
∴.
∵,,
∴四边形AFCE是平行四边形.
(2)①作AH⊥BC于点H,
∵AD∥BC,∠DAC=60°,
∴∠ACF=∠DAC=60°,
∴AH=AC·sin∠ACF=,
∴BC上的高h=;
②在整个运动过程中,OA=OC,OE=OF,
∴四边形AFCE恒为平行四边形,
E点开始运动时,随着它的运动,∠FAC逐渐减小,
当∠FAC=∠EAC=60°时,即AC为∠FAE的角平分线,
∵四边形AFCE恒为平行四边形,
∴四边形AFCE为菱形,
当∠FAC+∠EAC=90°时,即∠FAC=30°,
此时AF⊥FC,
∴此时四边形AFCE为矩形,
综上,在点E从点D向点A运动过程中,四边形AFCE先后为平行四边形、菱形、平行四边形、矩形、平行四边形.
故选D.
本题考查了平行四边形的性质与判定、矩形的判定、菱形的判定及正方形的判定,及锐角三角函数的知识,主要考查学生的理解能力和推理能力,题目比较好,难度适中.
17、详见解析.
【解析】
由四边形ABCD是平行四边形可得,CE∥AF,∠DAB=∠DCB,又AE、CF分别平分∠DAB、∠BCD,所以∠2=∠3,可证四边形AFCE是平行四边形.
【详解】
∵四边形ABCD是平行四边形,
∴CE∥AF,∠DAB=∠DCB,
∵AE、CF分别平分∠DAB、∠BCD,
∴∠2=∠3,
又∠3=∠CFB,
∴∠2=∠CFB,
∴AE∥CF,
又CE∥AF,
∴四边形AFCE是平行四边形.
18、(1)D和E;(2)m=,k=25;(3)N的坐标为(-6,-3)或(3,6).
【解析】
(1)利用矩形的周长公式、面积公式结合巧点的定义,即可找出点D,E是巧点;
(2)利用巧点的定义可得出关于m的一元一次方程,解之可得出m的值,再利用反比例函数图象上点的坐标特征,可求出k值;
(3)设N(x,x+3),根据巧点的定义得到2(|x|+|x+3|)=|x||x+3|,分三种情况讨论即可求解.
【详解】
(1)∵(4+4)×2=4×4,(5+)×2=5×,(1+3)×2≠1×3,
∴点D和点E是巧点,
故答案为:D和E;
(2)∵点M(m,10)(m>0),
∴矩形的周长=2(m+10),面积=10m.
∵点M是巧点,
∴2(m+10)=10m,解得:m=,
∴点M(,10).
∵点M在双曲线y=上,
∴k=×10=25;
(3)设N(x,x+3),则2(|x|+|x+3|)=|x||x+3|,
当x≤-3时,化简得:x2+7x+6=0,解得:x=-6或x=-1(舍去);
当-3<x<0时,化简得:x2+3x+6=0,无实根;
当x≥0时,化简得:x2-x-6=0,解得:x=3或x=-2(舍去),
综上,点N的坐标为(-6,-3)或(3,6).
本题主要考查一次函数图象以及反比例函数图象上点的坐标特征、矩形的周长及面积以及解一元二次方程,理解巧点的定义,分x≤-3、-3<x<0及x≥0三种情况,求出N点的坐标,是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1.
【解析】
延长BD交AC于F,利用“角边角”证明△ADF和△ADB全等,根据全等三角形对应边相等可得AF=AB,BD=FD,再求出CF并判断出DE是△BCF的中位线,然后根据三角形的中位线平行于第三边并且等于第三边的一半可得.
【详解】
解:如图,延长BD交AB于F,
∵AD平分∠BAC,
∴∠BAD=∠FAD,
∵BD⊥AD,
∴∠ADB=∠ADF=90°,
在△ADF和△ADB中
∴△ADF≌△ADB(ASA),
∴AF=AB,BD=FD,
∴CF=AC-AB=6-4=2cm,
又∵点E为BC的中点,
∴DE是△BCF的中位线,
.
本题考查了三角形的中位线平行于第三边并且等于第三边的一半,全等三角形的判定与性质,熟记性质并作出辅助线构造成全等三角形是解题的关键.
20、x≥1.
【解析】
根据被开方数大于等于0,分母不等于0列式进行计算即可得解.
【详解】
解:根据题意得,x﹣1≥0且x≠0,
解得x≥1且x≠0,
所以,自变量x的取值范围是x≥1.
故答案为x≥1.
本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.
21、1.
【解析】
针对零指数幂,二次根式化简和运算等考点分别进行计算,然后根据实数的运算法则求得计算结果:.
22、y=24-2x
【解析】分析:根据周长等于三边之和可得出底边长y关于腰长x的函数表达式.
详解:由题意得,
y+x+x=24,
∴y=24-2x.
故答案为:y=24-2x.
点睛:本题考查了列一次函数关系式,熟练掌握周长等于三边之和是解答本题的关键.
23、
【解析】
当线段AB最短时,直线AB与直线垂直,根据勾股定理求得AB的最短长度.
【详解】
解:当线段AB最短时,直线AB与直线垂直,
过点A作直线l,
因为直线是一、三象限的角平分线,
所以,
所以,
所以,
,即,
所以.
故答案是:.
考查了垂线段最短的性质,一次函数图象上点的坐标特征,勾股定理的应用,熟知垂线段最短是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)▱GBCH、▱ABFE、▱EFCD、▱EGFH
【解析】
试题分析:根据ABCD为平行四边形得出AD∥BC,则∠EAO=∠FCO,根据OA=OC,∠AOE=∠COF得出△OAE和△OCF全等,从而得出OE=OF,同理得出OG=OH,从而说明平行四边形;根据平行四边形的性质得出面积相等的四边形
试题解析:(1)证明:∵四边形ABCD为平行四边形 ∴AD∥BC ∴∠EAO=∠FCO
∵OA=OC ∠AOE=∠COF ∴△OAE≌△OCF ∴OE=OF 同理OG=OH ∴四边形EGFH是平行四边形
(2)□ABFE、□GBCH、□EFCD、□EGFH
考点:平行四边形的性质和判定
25、详见解析.
【解析】
根据已知条件易证△ADE≌△FCE,由全等三角形的性质可得AE=EF,已知BE⊥AE,根据等腰三角形三线合一的性质即可证明△ABF是等腰三角形
【详解】
∵AD∥BC,
∴∠ADC=∠ECF,
∵E是CD的中点,
∴DE=EC.
在△ADE与△FCE中, ,
∴△ADE≌△FCE(ASA),
∴AE=EF,
∵BE⊥AE,
∴△ABF是等腰三角形.
本题考查了全等三角形的判定与性质、等腰三角形的判定与性质,利用全等三角形的性质证得AE=EF是解决问题的关键.
26、(1)y1=32x;y2=28x+1200;(2)当100<x<300时,在实体店购买省钱,当x=300时,在实体店和网店购买一样,当x>300时,在网店购买省钱.
【解析】
(1)根据题意和表格求得用这两种方式购买跳绳所需的资金y(元)与购买的跳绳数x(条)之间的函数关系式即可.(2)比较(1)中求出的两个函数的大小并求出x的范围即可.(3)令y=10000,可以求得两种方式分别可以购买的跳绳数,从而可以得到王先生用不超过10000元购买跳绳,他最多能购买多少条跳绳.
【详解】
(1)由题意可得:
王先生在实体店购买跳绳所需的资金y1(元)与购买的跳绳数x(条)之间的函数关系式为:y1=40x×0.8=32x;
王先生在网店购买跳绳所需的资金y2(元)与购买的跳绳数x(条)之间的函数关系式为:y2=40×100+(x-100)×40×0.7=28x+1200;
(2)当y1>y2时,32x>28x+1200,
解得x>300;
当y1=y2时,32x=28x+1200,
解得x=300;
当y1<y2时,32x>28x+1200,
解得x<300;
∴当100<x<300时,在实体店购买省钱,当x=300时,在实体店和网店购买一样,当x>300时,在网店购买省钱.
本题考查一次函数的应用,明确题意,找出所求问题需要的条件,列出相应的函数关系式,会根据函数的值,求出相应的x的值是解题关键.
题号
一
二
三
四
五
总分
得分
购买方式
标价(元条)
优惠条件
实体店
40
全部按标价的8折出售
网店
40
购买100或100条以下,按标价出售;购买100条以上,从101条开始按标价的7折出售(免邮寄费)
云南省2024-2025学年九上数学开学质量检测试题【含答案】: 这是一份云南省2024-2025学年九上数学开学质量检测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年浙江省杭州市周浦中学数学九上开学复习检测模拟试题【含答案】: 这是一份2024-2025学年浙江省杭州市周浦中学数学九上开学复习检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年云南省楚雄北浦中学数学九年级第一学期期末联考模拟试题含答案: 这是一份2023-2024学年云南省楚雄北浦中学数学九年级第一学期期末联考模拟试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁, “泱泱华夏,浩浩千秋等内容,欢迎下载使用。