


2024-2025学年浙江省杭州市周浦中学数学九上开学复习检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在平行四边形中,对角线、相交于,,、、分别是、、的中点,下列结论:
①;②;③;④平分;⑤四边形是菱形.
其中正确的是( )
A.①②③B.①③④C.①②⑤D.②③⑤
2、(4分)一种药品经过两次降价,药价从每盒60元下调至每盒48.6元,则平均每次降价的百分比是( )
A.B.C. D.
3、(4分)一个直角三角形的两边长分别为5和12,则第三边的长为( )
A.13B.14C.D.13或
4、(4分)已知数据x1,x2,x3的平均数是5,则数据3x1+2,3x2+2,3x3+2的平均数是( )
A.5B.7C.15D.17
5、(4分)把一些笔记本分给几个学生,如果每人分3本,那么余8本,如果每人分5本,则最后一个人分到的本数不足3本,则共有学生( )人.
A.4 B.5 C.6 D.5或6
6、(4分)计算的结果是( )
A.-3B.3C.6D.9
7、(4分)下列各式中,最简二次根式为( )
A.B.C.D.
8、(4分)不等式x≤-1的解集在数轴上表示正确的是()
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则a的值是______.
10、(4分)如图,BD是矩形ABCD的一条对角线,点E、F分别是BD、BC的中点,若AB=8,BC=6,则AE+EF的长为_____.
11、(4分)已知点在直线上,则=__________.
12、(4分)若多项式,则=_______________.
13、(4分)如图,反比例函数y=(x>0)的图象经过矩形OABC对角线的交点M,分别交AB、BC于点D、E,连结DE.若四边形ODBE的面积为9,则△ODE的面积是________.
三、解答题(本大题共5个小题,共48分)
14、(12分)解分式方程:﹣1=.
15、(8分)阅读下面的解题过程,解答后面的问题:
如图,在平面直角坐标系中, , ,为线段的中点,求点的坐标;
解:分别过,做轴的平行线,过,做轴的平行线,两组平行线的交点如图所示,设,则,,
由图可知:
线段的中点的坐标为
(应用新知)
利用你阅读获得的新知解答下面的问题:
(1)已知,,则线段的中点坐标为
(2)平行四边形中,点,,的坐标分别为,,,利用中点坐标公式求点的坐标。
(3)如图,点在函数的图象上, ,在轴上,在函数的图象上 ,以,,,四个点为顶点,且以为一边构成平行四边形,直接写出所有满足条件的点坐标。
16、(8分)先化简,再求值: ,其中.
17、(10分)某种计时“香篆”在0:00时刻点燃,若“香篆”剩余的长度h(cm)与燃烧的时间x(h)之间是一次函数关系,h与x的一组对应数值如表所示:
(1)写出“香篆”在0:00时刻点然后,其剩余的长度h(cm)与燃烧时间x(h)的函数关系式,并解释函数表达式中x的系数及常数项的实际意义;
(2)通过计算说明当“香篆”剩余的长度为125cm时的时刻.
18、(10分)问题的提出:如果点P是锐角内一动点,如何确定一个位置,使点P到的三顶点的距离之和的值为最小?
问题的转化:把绕点A逆时针旋转得到,连接,这样就把确定的最小值的问题转化成确定的最小值的问题了,请你利用图1证明:;
问题的解决:当点P到锐角的三顶点的距离之和的值为最小时,求和的度数;
问题的延伸:如图2是有一个锐角为的直角三角形,如果斜边为2,点P是这个三角形内一动点,请你利用以上方法,求点P到这个三角形各顶点的距离之和的最小值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,矩形ABCD中,AB=6,BC=8,点F为BC边上的一个动点,把△ABF沿AF折叠。当点B的对应点B′落在矩形ABCD的对称轴上时,则BF的长为___.
20、(4分)分解因式:ab﹣b2=_____.
21、(4分)如图,是中边中点,,于,于,若,则__________.
22、(4分)如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PD=3cm,则PC的长为_____cm.
23、(4分)如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,则D点的坐标是 .
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在4×3正方形网格中,每个小正方形的边长都是1.
(1)分别求出线段AB,CD的长度;
(2)在图中画线段EF,使得EF的长为,以AB,CD,EF三条线段能否构成直角三角形,并说明理由.
25、(10分)某学习小组10名学生的某次数学测验成绩统计表如下:
(1)填空:x = ;此学习小组10名学生成绩的众数是 ;
(2)求此学习小组的数学平均成绩.
26、(12分)甲、乙两名队员参加射击训练,各自射击10次的成绩分别被制成下列统计图.
根据以上信息,整理分析数据如下:
(1)写出表格中的a、b、c的值;
(2)已知乙队员射击成绩的方差为4.2,计算出甲队员射击成绩的方差,并判断哪个队员的射击成绩较稳定.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
由平行四边形的性质可得OB=BC,由等腰三角形的性质可判断①正确,由直角三角形的性质和三角形中位线定理可判断②错误,通过证四边形BGFE是平行四边形,可判断③正确,由平行线的性质和等腰三角形的性质可判断④正确,由∠BAC≠30°可判断⑤错误.
【详解】
解:∵四边形ABCD是平行四边形
∴BO=DO=BD,AD=BC,AB=CD,AB∥BC,
又∵BD=2AD,
∴OB=BC=OD=DA,且点E 是OC中点,
∴BE⊥AC,故①正确,
∵E、F分别是OC、OD的中点,
∴EF∥CD,EF=CD,
∵点G是Rt△ABE斜边AB上的中点,
∴GE=AB=AG=BG
∴EG=EF=AG=BG,无法证明GE=GF,故②错误,
∵BG=EF,AB∥CD∥EF
∴四边形BGFE是平行四边形,
∴GF=BE,且BG=EF,GE=GE,
∴△BGE≌△FEG(SSS)故③正确
∵EF∥CD∥AB,
∴∠BAC=∠ACD=∠AEF,
∵AG=GE,
∴∠GAE=∠AEG,
∴∠AEG=∠AEF,
∴AE平分∠GEF,故④正确,
若四边形BEFG是菱形
∴BE=BG=AB,
∴∠BAC=30°
与题意不符合,故⑤错误
故选:B.
本题考查了菱形的判定,平行四边形的性质,全等三角形的判定和性质,三角形中位线定理等知识,灵活运用相关的性质定理、综合运用知识是解题的关键.
2、B
【解析】
设平均每次降价的百分比是x,则第一次降价后的价格为60×(1-x)元,第二次降价后的价格在第一次降价后的价格的基础上降低的,为60×(1-x)×(1-x)元,从而列出方程,然后求解即可.
【详解】
解:设平均每次降价的百分比是,根据题意得:
,
解得:,(不合题意,舍去),
答:平均每次降价的百分比是10%;
故选:B.
本题考查了一元二次方程的应用,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.
3、D
【解析】
本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边12既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即12是斜边或直角边的两种情况,然后利用勾股定理求解.
【详解】
当12和5均为直角边时,第三边==13;
当12为斜边,5为直角边,则第三边==,
故第三边的长为13或.
故选D.
本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.
4、D
【解析】
试题分析:先根据算术平均数的定义求出x1+x2+x3的值,进而可得出结论.
解:∵x1,x2,x3的平均数是5,
∴x1+x2+x3=15,
∴===1.
故选D.
考点:算术平均数.
5、C
【解析】
根据每人分3本,那么余8本,如果前面的每个学生分1本,那么最后一人就分不到3本,得出3x+8≥1(x-1),且1(x-1)+3>3x+8,分别求出即可.
【详解】
假设共有学生x人,根据题意得出:
1(x-1)+3>3x+8≥1(x-1),
解得:1<x≤6.1.
故选:C.
本题考查了不等式组的应用,解题关键是根据题意找出不等关系得出不等式组.
6、B
【解析】
根据算数平方根的意义解答即可.
【详解】
∵32=9,
∴=3.
故选:B.
本题考查了算术平方根的意义,一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.正数a有一个正的算术平方根, 0的算术平方根是0,负数没有算术平方根.
7、B
【解析】
根据最简二次根式具备的条件:被开方数不含分母,被开方数中不含能开得尽方的因数或因式,逐一进行判断即可得出答案.
【详解】
A被开方数中含有能开得尽方的因数54,不是最简二次根式,故错误;
B符合最简二次根式的条件,故正确;
C被开方数中含有分母6,不是最简二次根式,故错误;
D被开方数中含有能开得尽方的因式 ,不是最简二次根式,故错误;
故选:B.
本题主要考查最简二次根式,掌握最简二次根式具备的条件是解题的关键.
8、B
【解析】
根据数轴的表示方法表示即可.(注意等于的时候是实心的原点.)
【详解】
根据题意不等式x≤-1的解集是在-1的左边部分,包括-1.
故选B.
本题主要考查实数的数轴表示,注意有等号时应用实心原点表示.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、±1
【解析】
试题分析:根据坐标与图形得到三角形OAB的两边分别为|a|与5,然后根据三角形面积公式有:,
解得a=1或a=-1,
即a的值为±1.
考点:1.三角形的面积;2.坐标与图形性质.
10、8
【解析】
先根据三角形中位线定理得到EF的长,再根据直角三角形斜边上中线的性质,即可得到AE的长,进而得出计算结果.
【详解】
∵点E,F分别是BD,DC的中点,
∴FE是△BCD的中位线,
∴EF=BC=3,
∵∠BAD=90°,AD=BC=6,AB=8,
∴BD=10,
又∵E是BD的中点,
∴Rt△ABD中,AE=BD=5,
∴AE+EF=5+3=8,
故答案为:8
本题主要考查了矩形的性质以及三角形中位线定理的运用,解题时注意:在直角三角形中,斜边上的中线等于斜边的一半;三角形的中位线平行于第三边,并且等于第三边的一半.
11、
【解析】
把代入解析式,解方程即可.
【详解】
将点代入直线的解析式,得4=3a+2,
∴.a=
故本题应填写:.
本题考查了点在函数图像上,掌握函数解析式的基本性质是解题的关键.
12、-1
【解析】
利用多项式乘法去括号,根据对应项的系数相等即可求解.
【详解】
∵
∴,
故答案为:-1.
本题主要考查了因式分解与整式的乘法互为逆运算,并且考查了代数式相等的条件:对应项的系数相等.
13、
【解析】
设B的坐标为(2a,2b),E点坐标为(x,2b),D点坐标为(2a,y),因为D、E、M在反比例函数图象上,则ab=k,2bx=k, 2ay=k, 根据四边形ODBE的面积列式,求得k值,再由2bx×2ay=4abxy=k2=9, 求得xy的值,然后根据所求的结果求出△BED的面积,则△ODE的面积就是四边形ODBE的面积和△BED的面积之差.
【详解】
解:设B的坐标为(2a,2b), 则M点坐标为(a,b),
∵M在AC上,
∴ab=k(k>0),
设E点坐标为(x,2b),D点坐标为(2a,y),
则2bx=k, 2ay=k,
∴S四边形ODBE=2a×2b-×(2bx+2ay)=9,
即4k- (k+k)=9,
解得k=3,
∵2bx×2ay=4abxy=k2=9,
∴4abxy=9,
解得:xy=,
则S△BED=BE×BD=
,
∴ S△ODE = S四边形ODBE -S△BED=9-
本题主要考查反比函数与几何综合,解题关键在于利用面积建立等式求出k.
三、解答题(本大题共5个小题,共48分)
14、分式方程的解为x=1.1.
【解析】
根据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论依次计算可得.
【详解】
两边都乘以3(x﹣1),得:3x﹣3(x﹣1)=2x,
解得:x=1.1,
检验:x=1.1时,3(x﹣1)=1.1≠0,
所以分式方程的解为x=1.1.
本题考查了解分式方程,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.
15、 (1)线段的中点坐标是;(2)点的坐标为;(3)符合条件的点坐标为或.
【解析】
(1)直接套用中点坐标公式,即可得出中点坐标;
(2)根据AC、BD的中点重合,可得出,代入数据可得出点D的坐标;
(3)当AB为该平行四边形一边时,此时CD∥AB,分别求出以AD、BC为对角线时,以AC、BD为对角线的情况可得出点D坐标.
【详解】
解:(1)AB中点坐标为,即AB的中点坐标是:(1,1);
(2)根据平行四边形的性质:对角线互相平分,可知、的中点重合,
由中点坐标公式可得:,
代入数据,得:,
解得:,,所以点的坐标为;
(3)当为该平行四边形一边时,则,对角线为、或、;
故可得:,或,.
故可得或,
,
或
代入到中,可得或.
综上,符合条件的点坐标为或.
本题考查了一次函数的综合题,涉及了中点坐标公式、平行四边形的性质,综合性较强.
16、
【解析】
根据分式的运算法则即可进行化简求值.
【详解】
原式===
当x=时,原式= =
此题主要考查分式的运算,解题的关键是熟知分式的运算法则.
17、(1)x的系数表示“香篆”每小时燃烧10cm,常数项表示“香篆”未点燃之前的长度为240cm;;(2)“香篆”在0:00点燃后,燃烧了11.5小时后的时刻为11点30分.
【解析】
(1)根据待定系数法确定函数关系式即可求解;
(2)把h=125代入解析式即可求解.
【详解】
解:(1)∵“香篆”在0:00时刻点然后,其剩余的长度h(cm)与燃烧时间x(h)的函数关系式是一次函数,
设一次函数的解析式为:h=kx+b,
∵当x=3时,h=210,当x=4时,h=200,
可得:,
解得:,
所以解析式为:h=﹣10x+240,
x的系数表示“香篆”每小时燃烧10cm,常数项表示“香篆”未点燃之前的长度为240cm;
(2)当“香篆”剩余125cm时,可知h=125,代入解析式得:125=﹣10x+240,
解得:x=11.5,
所以“香篆”在0:00点燃后,燃烧了11.5小时后的时刻为11点30分.
此题主要考查一次函数的应用,解题的关键是根据题意求出一次函数的解析式.
18、(1)证明见解析;(2)满足:时,的值为最小;(3)点P到这个三角形各顶点的距离之和的最小值为.
【解析】
问题的转化:根据旋转的性质证明△APP´是等边三角形,则PP´=PA,可得结论;
问题的解决:运用类比的思想,把绕点A逆时针旋转60度得到,连接,由“问题的转化”可知:当B、P、P´、C´在同一直线上时,的值为最小,确定当:时,满足三点共线;
问题的延伸:如图3,作辅助线,构建直角△ABC´,利用勾股定理求AC´的长,即是点P到这个三角形各顶点的距离之和的最小值.
【详解】
问题的转化:
如图1,
由旋转得:∠PAP´=60°,PA=P´A,
△APP´是等边三角形,
∴PP´=PA,
∵PC=P´C,
.
问题的解决:
满足:时,的值为最小;
理由是:如图2,把绕点A逆时针旋转60度得到,连接,
由“问题的转化”可知:当B、P、P´、C´在同一直线上时,的值为最小,
,∠APP´=60°,
∴∠APB+∠APP´=180°,
、P、P´在同一直线上,
由旋转得:∠AP´C´=∠APC=120°,
∵∠AP´P=60°,
∴∠AP´C´+∠A P´P=180°,
、P´、C´在同一直线上,
、P、P´、C´在同一直线上,
此时的值为最小,
故答案为:;
问题的延伸:
如图3,中,,,
,,
把绕点B逆时针旋转60度得到,连接,
当A、P、P´、C´在同一直线上时,的值为最小,
由旋转得:BP=BP´,∠PBP´=60°,PC=P´C´,BC=B´C´,
是等边三角形,
∴PP´=PB,
∵∠ABC=∠APB+∠CBP=∠APB+∠C´BP´=30°,
∴∠ABC´=90°,
由勾股定理得:AC´=,
∴PA+PB+PC=PA+PP´+P´C´=AC´=,
则点P到这个三角形各顶点的距离之和的最小值为.
本题主要考查三角形的旋转变换的性质、勾股定理、等边三角形的判定与性质等知识点,将待求线段的和通过旋转变换转化为同一直线上的线段来求是解题的关键,学会利用旋转的方法添加辅助线,构造特殊三角形解决问题,属于中考压轴题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2 或9−3.
【解析】
分两种情况考虑:B′在横对称轴上与B′在竖对称轴上,分别求出BF的长即可.
【详解】
当B′在横对称轴上,此时AE=EB=3,如图1所示,
由折叠可得△ABF≌△AB′F
∴∠AFB=∠AFB′,AB=AB′=6,BF=B′F,
∴∠B′MF=∠B′FM,
∴B′M=B′F,
∵EB′∥BF,且E为AB中点,
∴M为AF中点,即EM为中位线,∠B′MF=∠MFB,
∴EM=BF,
设BF=x,则有B′M=B′F=BF=x,EM=x,即EB′=x,
在Rt△AEB′中,根据勾股定理得:3 +(x) =6,
解得:x=2 ,即BF=2;
当B′在竖对称轴上时,此时AM=MD=BN=CN=4,如图2所示:
设BF=x,B′N=y,则有FN=4−x,
在Rt△FNB′中,根据勾股定理得:y+(4−x) =x,
∵∠AB′F=90°,
∴∠AB′M+∠NB′F=90°,
∵∠B′FN+∠NB′F=90°,
∴∠B′FN=∠AB′M,
∵∠AMB′=∠B′NF=90°,
∴△AMB′∽△B′NF,
∴ ,即,
∴y= x,
∴(x) +(4−x) =x,
解得x=9+3 ,x=9−3,
∵9+3>4,舍去,
∴x=9−3
所以BF的长为2或9−3,
故答案为:2 或9−3.
此题考查翻折变换(折叠问题),解题关键在于作辅助线
20、b(a﹣b)
【解析】根据提公因式法进行分解即可,ab﹣b2=b(a﹣b),
故答案为:b(a﹣b).
21、1
【解析】
根据直角三角形斜边上的中线等于斜边的一半得出ED=BC,FD=BC,那么ED=FD,又∠EDF=60°,根据有一个角是60°的等腰三角形是等边三角形判定△EDF是等边三角形,从而得出ED=FD=EF=4,进而求出BC.
【详解】
解:∵D是△ABC中BC边中点,CE⊥AB于E,BF⊥AC于F,
∴ED=BC,FD=BC,
∴ED=FD,
又∠EDF=60°,
∴△EDF是等边三角形,
∴ED=FD=EF=4,
∴BC=2ED=1.
故答案为1.
本题考查了直角三角形斜边上的中线的性质,等边三角形的判定与性质,判定△EDF是等边三角形是解题的关键.
22、1
【解析】
如图,作PH⊥OB于H.由角平分线的性质定理推出PH=PD=3cm,再证明∠PCH=30°即可解决问题.
【详解】
解:如图,作PH⊥OB于H.
∵∠POA=∠POB,PH⊥OB,PD⊥OA,
∴PH=PD=3cm,
∵PC∥OA,
∴∠POA=∠CPO=15°,
∴∠PCH=∠COP+∠CPO=30°,
∵∠PHC=90°,
∴PC=2PH=1cm.
故答案为1.
本题考查角平分线的性质,平行线的性质,等腰三角形的判定和性质,直角三角形30度角的性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.
23、(0,5)
【解析】
试题分析:先由矩形的性质得到AB=OC=8,BC=OA=10,再根据折叠的性质得AE=AO=10,DE=DO,在Rt△ABE中,利用勾股定理可计算出BE=6,则CE=BC﹣BE=4,设OD=x,则DE=x,DC=8﹣x,在Rt△CDE中根据勾股定理有x2=(8﹣x)2+42,解方程求出x,即可确定D点坐标.
解:∵四边形ABCD为矩形,
∴AB=OC=8,BC=OA=10,
∵纸片沿AD翻折,使点O落在BC边上的点E处,
∴AE=AO=10,DE=DO,
在Rt△ABE中,AB=8,AE=10,
∴BE=6,
∴CE=BC﹣BE=4,
设OD=x,则DE=x,DC=8﹣x,
在Rt△CDE中,∵DE2=CD2+CE2,
∴x2=(8﹣x)2+42,
∴x=5,
∴D点坐标为(0,5).
故答案为(0,5).
二、解答题(本大题共3个小题,共30分)
24、;.(2)以AB、CD、EF三条线段可以组成直角三角形
【解析】
(1)利用勾股定理求出AB、CD的长即可;
(2)根据勾股定理的逆定理,即可作出判断.
【详解】
(1)AB==;CD==2.
(2)如图,EF==,
∵CD2+EF2=8+5=13,AB2=13,∴CD2+EF2=AB2,∴以AB、CD、EF三条线段可以组成直角三角形.
本题考查了勾股定理、勾股定理的逆定理,充分利用网格是解题的关键.
25、(1)2,90;(2)79分
【解析】
(1)①用总人数减去得60分、70分、90分的人数,即可求出x的值;
②根据众数的定义即一组数据中出现次数最多的数,即可得出答案;
(2)根据平均数的计算公式分别进行计算即可.
【详解】
解:(1)①∵共有10名学生,
∴x=10-1-3-4=2;
②∵90出现了4次,出现的次数最多,
∴此学习小组10名学生成绩的众数是90;
故答案为2,90;
(2)此学习小组的数学平均成绩是:
(分)
此题考查了众数和平均数,掌握众数和平均数的概念及公式是本题的关键,众数是一组数据中出现次数最多的数.
26、(1)a=7,b=7,c=8;(2)甲队员的射击成绩较稳定
【解析】
(1)利用加权平均数的计算公式、中位数、众数的概念解答;
(2)利用方差的计算公式求出S甲2,根据方差的性质判断即可.
【详解】
解:(1)a=(3+6+4+8+7+8+7+8+10+9)=7,b=7,c=8;
(2)S甲2=×[(5﹣7)2×1+(6﹣7)2×2+(7﹣7)2×4+(8﹣7)2×2+(9﹣7)2×1]=1.2,
则S甲2<S乙2,
∴甲队员的射击成绩较稳定.
故答案为(1)a=7,b=7,c=8;(2)甲队员的射击成绩较稳定.
本题考查的是加权平均数、方差的计算,掌握加权平均数的计算公式、方差的计算公式是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
燃烧的时间x(h)
…
3
4
5
6
…
剩余的长度h(cm)
…
210
200
190
180
…
成绩(分)
60
70
80
90
人数(人)
1
3
x
4
队员
平均/环
中位数/环
众数/环
甲
7
b
7
乙
a
7.5
c
2024-2025学年天津市南开区育红中学数学九上开学复习检测模拟试题【含答案】: 这是一份2024-2025学年天津市南开区育红中学数学九上开学复习检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年山西省高平市特立中学数学九上开学检测模拟试题【含答案】: 这是一份2024-2025学年山西省高平市特立中学数学九上开学检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年山东省邹城市邹城中学数学九上开学复习检测模拟试题【含答案】: 这是一份2024-2025学年山东省邹城市邹城中学数学九上开学复习检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。